Long-Term Dynamics of Heterotrophic Bacterioplankton in a Large Eutrophic Reservoir

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


The results of long-term determinations of the abundance, biomass, and production of heterotrophic bacterioplankton in the eutrophic Gorky Reservoir (Middle Volga) are discussed. The mean values of the parameters increased 1.7–1.9 times in 2015–2016 when compared to 1991–1999. During the entire period of studies, the maximum values were recorded in the abnormally hot summer of 2010, when the temperature of the surface water reached 33°C. Apparently, an increase in the abundance and production and proportion of aggregated bacterioplankton is associated with an increase in water temperature and primary production, eutrophication, and contamination of the reservoir.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. 1

    Avakyan, A.B., Saltankin, V.P., and Sharapov, V.A., Vodokhranilishcha (Reservoirs), Moscow: Mysl’, 1987.

    Google Scholar 

  2. 2

    Azam, F., Cho, B.C., Smith, D.C., and Simon, M., Bacterial cycling of matter in the pelagic zone of aquatic ecosystems, in Large Lakes, Ecological Structure and Function, Berlin: Springer, 1990, p. 477.

    Google Scholar 

  3. 3

    Brookes, J.D. and Carey, C.C., Resilience to blooms, Science, 2011, vol. 334, no. 6052, p. 46. https://doi.org/10.1126/science.1207349

    CAS  Article  Google Scholar 

  4. 4

    Christoffersen, K., Andersen, N., Sondergaard, M., et al., Implications of climate-enforced temperature increases on freshwater pico- and nanoplankton populations studied in artificial ponds during 16 months, Hydrobiology, 2006, vol. 560, p. 259. https://doi.org/10.1007/s10750-005-1221-2

    CAS  Article  Google Scholar 

  5. 5

    Ducklow, H.W. and Hill, S.M., The growth of heterotrophic bacteria in the surface waters of warm core rings, Limnol., Oceanogr., 1985, vol. 30, no. 2, p. 239. https://doi.org/10.4319/lo.1985.30.2.0239

    Article  Google Scholar 

  6. 6

    Kochetkova, M.Yu., Features of the formation and transformation of water quality in the Gorky and Cheboksary reservoirs, Extended Abstract of Cand. Sci. (Geol.) Dissertation, Moscow, 2009.

  7. 7

    Kopylov, A.I. and Kosolapov, D.B., Microbiological indicators of freshwater eutrophication, in Sb. mater. mezhdunar. konf. “Bioindikatsiya v monitoringe presnovodnykh ekosistem” (Proc. Int. Conf. “Bioindication in Monitoring Freshwater Ecosystems”), St. Petersburg: Lema, 2007, p. 176.

  8. 8

    Kopylov, A.I. and Kosolapov, D.B., Bakterioplankton vodokhranilishch Verkhnei i Srednei Volgi (Bacterioplankton of the Upper and Middle Volga Reservoirs), Moscow: Sovrem. Gumanit. Univ., 2008.

  9. 9

    Kopylov, A.I., Stroinov, Ya.V., Zabotkina, E.A., et al., Heterotrophic microorganisms and viruses in the water of the Gorky Reservoir, Inland Water Biol., 2013, vol. 6, no. 2, p. 98. https://doi.org/10.1134/S1995082913010070

    Article  Google Scholar 

  10. 10

    Korneva, L.G., Mineeva, N.M., and Kopylov, A.I., “Blooming” of water by cyanobacteria (blue-green algae)—a real threat of deterioration of water quality in the Volga reservoirs, in Mater. dokl. Vseros. konf. “Bassein Volgi v XXI veke: struktura i funktsionirovanie ekosistem vodokhranilishch” (Proc. All-Russia Conf. “Volga Basin in the 21st Century: Structure and Functioning of Reservoir Ecosystems), Borok, 2012, pp. 22–26.

  11. 11

    Landry, M.R. and Hassett, R.P., Estimating the grazing impact of marine microzooplankton, Mar. Biol. (Berlin), 1982, vol. 67, p. 283. https://doi.org/10.1007/BF00397668

    Article  Google Scholar 

  12. 12

    Lazareva, V.I., Mineeva, N.M., and Zhdanova, S.M., Spatial distribution of plankton in the Upper and Middle Volga reservoirs in years with different thermal conditions, Povolzh. Ekol. Zh., 2012, no. 4, p. 394.

  13. 13

    Litvinov, A.S. and Roshchupko, V.F., Regional climate changes and fluctuations of elements in the Rybinsk Reservoir ecosystem, in Aktual’nye problemy ekologii Yaroslavskoi oblasti (Actual Problems of Ecology of the Yaroslavl Oblast), Yaroslavl: Verkhne-Volzh. Otd. Ros. Ekol. Akad, 2005, p. 55.

  14. 14

    Litvinov, A.S., Stepanova, I.E., Bikbulatov, E.S., and Bikbulatova, E.M., Hydrological and hydrochemical characteristics of the Upper and Middle Volga reservoirs in the low-water period, Vodn. Khoz. Rossii: Probl., Tekhnol., Upravl., 2014, no. 2, p. 14.

  15. 15

    Norland, S., The relationship between biomass and volume of bacteria, in Handbook of Methods in Aquatic Microbial Ecology, Boca Raton: Lewis Publishers, 1993, p. 303.

    Google Scholar 

  16. 16

    Oksiyuk, O.P., Zhukinskii, V.N., Braginskii, L.P., et al., Complex ecological classification of the quality of land surface waters, Gidrobiol. Zh., 1993, vol. 29, no. 4, p. 62.

    Google Scholar 

  17. 17

    Porter, K.G. and Feig, Y.S., The use of DAPI for identifying and counting of aquatic microflora, Limnol., Oceanogr., 1980, vol. 25, no. 5, p. 943. https://doi.org/10.4319/lo.1980.25.5.0943

    Article  Google Scholar 

  18. 18

    Rae, R. and Vincent, W.F., Effects of temperature and ultraviolet radiation on microbial food web structure: potential responses to global change, Freshwater Biol., 1998, vol. 40, no. 4, p. 747. https://doi.org/10.1046/j.1365-2427.1998.00361.x

    Article  Google Scholar 

  19. 19

    Romanenko, V.I., Mikrobiologicheskie protsessy produktsii i destruktsii organicheskogo veshchestva vo vnutrennikh vodoemakh (Microbiological Processes of Production and Destruction of Organic Matter in Inland Water Bodies), Leningrad: Nauka, 1985.

  20. 20

    Romanenko, V.I. and Kuznetsov, S.I., Ekologiya mikroorganizmov presnykh vodoemov. Laboratornoe rukovodstvo (Ecology of Freshwater Microorganisms: Laboratory Guidance), Leningrad: Nauka, 1974.

  21. 21

    Vtoroi otsenochnyi doklad Rosgidrometa ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii. Obshchee rezyume (The Second Assessment Report of Roshydromet on Climate Changes and Their Consequences on the Territory of the Russian Federation. General Summary), Moscow: Rosgidromet, 2014.

  22. 22

    Zakonnova, A.V. and Litvinov, A.S., Long-term changes in the hydroclimatic regime of the Rybinsk Reservoir, in Gidrologo-gidrokhimicheskie issledovaniya vodoemov basseina Volgi (Hydrological and Hydrochemical Studies of the Volga Basin Reservoirs), Yaroslavl: Filigran’, 2016, p. 16.

Download references


This study was performed within the framework of a state assignment (project no. АААА-А18-118012690098-5) and partially supported by a program of fundamental research of the Department of Biological Sciences, Russian Academy of Sciences (“Biodiversity of Natural Ecosystems. Biological Resources of Russia: Assessment of the State and Fundamentals of Monitoring”).

Author information



Corresponding authors

Correspondence to A. I. Kopylov or D. B. Kosolapov.

Additional information

Translated by N. Ruban

Abbreviations: Вb, biomass of bacterioplankton; Nb, abundance of bacterioplankton; Vb, volume of bacterial cells, Pb; production of bacterioplankton; and PPHY, production of phytoplankton.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kopylov, A.I., Kosolapov, D.B. & Mikryakova, I.S. Long-Term Dynamics of Heterotrophic Bacterioplankton in a Large Eutrophic Reservoir. Inland Water Biol 13, 585–591 (2020). https://doi.org/10.1134/S1995082920040045

Download citation


  • heterotrophic bacterioplankton
  • long-term dynamics
  • large eutrophic plain reservoir