Inland Water Biology

, Volume 9, Issue 3, pp 319–328 | Cite as

Mercury in the muscle tissue of fish in the Central and South Vietnam

Aquatic Toxicology


The content of mercury has been determined in the muscle tissue of 18 fish species in rivers, lakes, and reservoirs of Central and South Vietnam. The region is characterized by lower metal concentrations than those in water bodies in temperate and northern latitudes. In 76% of samples (n = 986), the content of Hg was ≤0.5 μg Hg/g of dry (≤0.1 μg/g of wet) tissue weight. In water bodies and watercourses of tropical latitudes, interspecific variations in fish can be one of the factors responsible for a wide range of Hg variation within the same species.


mercury fish tropical ecosystems Vietnam Southeast Asia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lobus, N.V., Mercury content in bottom sediments of water bodies of South Vietnam, Toksikol. Vestn, 2012, no. 2, pp. 41–43.Google Scholar
  2. 2.
    Lobus, N.V., Komov, V.T., and Nguyen Thi Hai Thanh, Mercury concentration in ecosystem components in water bodies and streams in Khanh Hoa province (Central Vietnam), Water Resour., 2011, vol. 38, no. 6, pp. 799–805.CrossRefGoogle Scholar
  3. 3.
    Nemova, N.N., Biokhimicheskie effekty nakopleniya rtuti u ryb (Biochemical Effects of Mercury Accumulation in Fish), Moscow: Nauka, 2004.Google Scholar
  4. 4.
    Pavlov, D.S. and Kasumyan, A.O., Raznoobrazie ryb po kharakteru i sposobam pitaniya (troficheskaya klassifikatsiya ryb) (Fish Diversity by the Nature and Methods of Nutrition (Trophic Classification of Fish)), Moscow: MGU, 2002.Google Scholar
  5. 5.
    Stepanova, I.K. and Komov, V.T., The role of the trophic structure of the ecosystem of water bodies of the North-West Russia in the accumulation of mercury in fish, Gidrobiol. Zh., 2004, vol. 40, no. 2, pp. 87–96.Google Scholar
  6. 6.
    Stolbunov, I.A., Adaptive complexes of morphological and behavioral traits of fish from lothic and limnetic habitats, in Ekologiya vnutrennikh vod V’etnama (Ecology of Internal Waters of Vietnam), Moscow: Tovar. Nauch. Izd. KMK, 2014, pp. 371–382.Google Scholar
  7. 7.
    Ekologiya vnutrennikh vod V’etnama (Ecology of Internal Waters of Vietnam), Moscow: Tovar. Nauch. Izd. KMK, 2014.Google Scholar
  8. 8.
    Barbosa, A.C., Souza, J., and Dorea, J.D., Mercury biomagnification in a tropical black water (Rio Negro, Brazil), Arch. Environ. Contam. Toxicol., 2003, vol. 45, no. 2, pp. 235–246.CrossRefPubMedGoogle Scholar
  9. 9.
    Black, F.J., Bokhutlo, T., Somoxa, A., et al., The tropical African mercury anomaly: lower than expected mercury concentrations in fish and human hair, Sci. Total Environ., 2011, vol. 409, pp. 1967–1975.CrossRefPubMedGoogle Scholar
  10. 10.
    Boudou, A., Delnomdedieu, M., Georgescauld, D., et al., Fundamental roles of biological barriers in mercury accumulation and transfer in freshwater ecosystems (analysis at organism, organ, cell and molecular levels), Water, Air and Soil Pollut., 1991, vol. 56, no. 1, pp. 807–821.CrossRefGoogle Scholar
  11. 11.
    Brabo, E.S., Santos, E.O., and Faial, K.D., Mercury contamination of fish and exposures of an indigenous community in Para State, Brazil, Environ. Res., 2000, vol. 84, no. 3, pp. 197–203.CrossRefGoogle Scholar
  12. 12.
    Castilhos, Z.C. and Bidone, E.D., Hg biomagnification in the ichthyofauna of the Tapajos River Region, Amazonia, Brazil, Bull. Environ. Contam. Toxicol., 2001, vol. 64, no. 5, pp. 693–700.CrossRefGoogle Scholar
  13. 13.
    Driscoll, C.T., Mason, R.P., Chan, H.M., et al., Mercury as a global pollutant: sources, pathways and effects, Environ. Sci. Technol., 2013, vol. 47, pp. 4967–4983.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Dudgeon, D., The ecology of tropical Asian rivers and streams in relation to biodiversity conservation, Annu. Rev. Ecol. Syst., 2000, vol. 31, pp. 239–263.CrossRefGoogle Scholar
  15. 15.
    Fostier, A.H., Forti, M.C., Guimaraes, J.R.D., et al., Mercury in human and environmental samples from two lakes in Amapa, Brazilian Amazon, AMBIO, 1999, vol. 28, no. 4, pp. 296–301.Google Scholar
  16. 16.
    Grieb, T.M., Bowie, G.L., Driscoll, C.T., et al., Factors affecting mercury accumulation in fish in the upper, Michigan: Peninsula, Environ. Toxicol. Chem., 1990, vol. 9, no. 7, pp. 919–930.CrossRefGoogle Scholar
  17. 17.
    Haines, T.A., Komov, V.T., and Jagoe, C.H., Lake acidity and mercury content of fish in Darwin National Reserve, Russia, Environ. Pollut., 1992, vol. 78, nos. 1–3, pp. 107–112.CrossRefPubMedGoogle Scholar
  18. 18.
    Hall, B.D., Bodaly, R.A., Fudge, R.J.P., et al., Food as the dominant pathway of methylmercury uptake by fish, Water Air Soil Pollut., 1997, vol. 100, pp. 13–24.Google Scholar
  19. 19.
    Lehnherr, I. and Louis, V.L., Importance of ultraviolet radiation in the photodemethylation of methylmercury in freshwater ecosystems, Environ. Sci. Technol., 2009, vol. 43, pp. 5692–5698.CrossRefPubMedGoogle Scholar
  20. 20.
    Lima, A.P., Muller, R.C., Sarkis, J.E., et al., Mercury contamination in fish from Santarem, Para, Brazil, Environ. Res., 2000, vol. 83, no. 2, pp. 117–122.CrossRefGoogle Scholar
  21. 21.
    Li-Qiang, X., Xiao-Dong, L., Li-Quang, S., et al., A 700-year record of mercury in avian eggshells of Guangjin Island, South China Sea, Environ. Pollut., 2011, vol. 159, no. 4, pp. 889–896.CrossRefGoogle Scholar
  22. 22.
    Mason, R.P. and Fitzgerald, W.F., Distribution and biogeochemical cycling of mercury in the equatorial pacific ocean, Deep Sea Res. Part I: Ocean. Res. Papers, 1993, vol. 40, no. 9, pp. 1897–1924.CrossRefGoogle Scholar
  23. 23.
    Mason, R.P., Fitzgerald, W.F., and Morel, F.M.M., The biogeochemical cycling of elemental mercury: anthropogenic influences, Geochim. Cosmochim. Acta, 1994, vol. 58, no. 15, pp. 3191–3198.CrossRefGoogle Scholar
  24. 24.
    Mathers, R.A. and Johansen, P.H., The effects of feeding ecology on mercury accumulation in walleye (Stizostedion vitreum) and pike (Esox lucius) in Lake Simcoe, Can. J. Zool., 1985, vol. 63, no. 9, pp. 2006–2012.CrossRefGoogle Scholar
  25. 25.
    Mercury Pollution: Integration and Synthesis, Florida: Lewis Publ., 1994.Google Scholar
  26. 26.
    Morel, F.M., Kraepiel, A.M., and Amyot, M., The chemical cycle and bioaccumulation of mercury, Ann. Rev. Ecol. Syst., 1998, vol. 29, pp. 543–566.CrossRefGoogle Scholar
  27. 27.
    Nevado, J.J.B., Martin-Doimeadios, R.C.R., Bernardo, F.J.G., et al., Mercury in the Tapajos River basin, Brazilian Amazon: a review, Environ. Int., 2010, vol. 36, pp. 593–608.Google Scholar
  28. 28.
    Pacyna, E.G., Pacyna, J.M., Sundseth, K.J., et al., Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020, Atmos. Environ., 2010, vol. 44, pp. 2487–2499.CrossRefGoogle Scholar
  29. 29.
    Selin, N.E., Global biogeochemical cycling of mercury: a review, Annu. Rev. Environ. Resource, 2009, vol. 34, no. 1, pp. 43–63.CrossRefGoogle Scholar
  30. 30.
    Stolbunov, I.A. and Pavlov, D.D., Behavioral differences of various ecological groups of roach Rutilus rutilus L. and perch Perca fluviatilis L., J. Ichthyol., 2006, vol. 46, no. 2, pp. 213–219.CrossRefGoogle Scholar
  31. 31.
    Sunda, W.G. and Huntsman, S.A., Processes regulating cellular metal accumulation and physiological effects: phytoplankton as model systems, Sci. Total Environ., 1998, vol. 219, nos. 2–3, pp. 165–181.CrossRefGoogle Scholar
  32. 32.
    Ullrich, S.M., Tanton, T.W., and Abdrashitova, S.A., Mercury in the aquatic environment: a review of factors affecting methylation, Environ. Sci. Technol., 2001, vol. 31, no. 3, pp. 241–293.CrossRefGoogle Scholar
  33. 33.
    Verta, M., Mercury in Finnish forest lakes and reservoirs: anthropogenic contribution to the load and accumulation in fish, Nat. Board Water Environ. Finland, 1990, vol. 6, no. 1, pp. 1–33.Google Scholar
  34. 34.
    Wiener, J.G., Mercury exposed: advances in environmental analysis and ecotoxicology of a highly toxic metal, Environ. Toxicol. Chem., 2013, vol. 32, no. 10, pp. 2175–2178.CrossRefPubMedGoogle Scholar
  35. 35.
    Wiener, J.G., Knights, B.C., and Sandheinreich, M.B., Mercury in soils, lakes and fish in Vojageurs National Park (Minnesota): importance of atmospheric deposition and ecosystem factors, Environ. Sci. Technol., 2006, vol. 40, no. 20, pp. 6261–6268.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  2. 2.Papanin Institute for Biology of Inland WatersRussian Academy of Sciences, BorokYaroslavl oblastRussia

Personalised recommendations