Inland Water Biology

, Volume 8, Issue 2, pp 157–165 | Cite as

Seasonal dynamics of yellow water lily Nuphur lutea (L.) Smith (Nymphaeaceae) in the small Ild River (Yaroslavl oblast)

  • A. M. Chernova
Higher Aquatic Plants


Several peaks have been determined in the seasonal dynamics of the aboveground biomass of the yellow water lily. The aboveground biomass reaches its maximal values during the period of mass floweringearly fruiting. The accumulation of plant litter during the growing season occurs unevenly; its maximal values are reached when one type of leaves is replaced by the other. The net aboveground annual production of yellow water lily exceeds on average two times the maximum values of aboveground biomass. It is estimated that 1 m2 of overgrowths yields on average 349 g of organic carbon.


biomass production Nuphur lutea 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dovbnya, I.V., Production of hydrophilic vegetation of Lake Nero, in Biologiya Vnutrennikh Vod: Inform. Byul. (Inland Water Biology: Inform. Bull.), St. Petersburg, 1995, vol. 98, pp. 13–16.Google Scholar
  2. 2.
    Karmanova, I.V., Matematicheskie metody izucheniya rosta i produktivnosti rastenii (Mathematical Methods for Studying Plant Growth and Productivity), Moscow: Nauka, 1976.Google Scholar
  3. 3.
    Katanskaya, V.M., Biomassa vysshei vodnoi rastitel’nosti v ozerakh Karel’skogo peresheika, Tr. Lab. ozerovedeniya, 1954, vol. 3, pp. 102–117.Google Scholar
  4. 4.
    Katanskaya, V.M., The biomass of higher aquatic vegetation in lakes of the Karelian Isthmus, Tr. Lab. Ozerovedeniya, 1960, vol. 11, pp. 151–177.Google Scholar
  5. 5.
    Korelyakova, I.L., Production of higher vegetation of the Kiev Reservoir, in Kievskoe vodokhranilishche. Gidrokhimiya, biologiya, produktivnost’ (Kiev Reservoir: Hydrochemistry, Biology, Productivity), Kiev: Nauk. Dumka, 1972.Google Scholar
  6. 6.
    Kurashov, E.A., Krylova, Yu.V., Chernova, A.M., and Mitrukova, G.G., Component composition of lowmolecular-weight volatile organic compounds of Nuphar lutea (Nymphaeaceae) in the beginning of the growing season, Voda: Khim. Ekol., 2013, no. 5 (59), pp. 67–80.Google Scholar
  7. 7.
    Markov, M.V., Populyatsionnaya biologiya rastenii (Population Biology of Plants), Moscow: Tovar. Nauch. Izd., 2012.Google Scholar
  8. 8.
    Markov, M.V. and Pleshchinskaya, E.N., Reproductive effort in plants, Zh. Obshch. Biol., 1987, vol. 48, no. 1, pp. 77–83.Google Scholar
  9. 9.
    Papchenkov, V.G., Rastitel’nyi pokrov vodoemov i vodotokov Srednego Povolzh’ya (The Vegetation Cover of Water Bodies and Watercourses of the Middle Volga), Yaroslavl: TsMP MUBiNT, 2001.Google Scholar
  10. 10.
    Raspopov, I.M., Phytomass and production of macrophytes of Lake Onega, in Mikrobiologiya i pervichnaya produktsiya Onezhskogo ozera (Microbiology and Primary Production of Lake Onega), Leningrad: Nauka, 1973, pp. 123–142.Google Scholar
  11. 11.
    Raspopov, I.M., Vysshaya vodnaya rastitel’nost’ bol’shikh ozer Severo-Zapada SSSR (Higher Aquatic Vegetation of Large Lakes of the North-West of the USSR), Leningrad: Nauka, 1985.Google Scholar
  12. 12.
    Raspopov, I.M. and Rychkova, M.I., Biomass of some groups of macrophytes of Lake Ladoga in the seasonal aspect, in Gidrobiologiya i ikhtiologiya vnutrennikh vodoemov Pribaltiki (Hydrobiology and Ichthyology of Inland Water Bodies of Baltic), Riga: AN Latv. SSR, 1963, pp. 177–182.Google Scholar
  13. 13.
    Chernova, A.M., Seasonal dynamics of productivity of the yellow water lily (Nuphar lutea, Nymphaeaceae) under conditions of small rivers of the Upper Volga region, Cand. Sci. (Biol.) Dissertation: Borok, 2013.Google Scholar
  14. 14.
    Chernova, A.M. and Papchenkov, V.G., Calculation method to determine the biomass of Nuphar lutea (Nymphaeaceae) by morphometric indices, Rastit. Resursy, 2012, vol. 48, no. 4, pp. 614–625.Google Scholar
  15. 15.
    Ekzertsev, V.A. and Dovbnya, I.V., Annual production of hydrophilic vegetation of Volga reservoirs, in Vtoraya Konf. po izucheniyu vodoemov basseina Volgi “Volga-2” (Second Conference on Studying the Reservoirs of the Volga River Basin “Volga-2”), Borok, 1974, pp. 24–28.Google Scholar
  16. 16.
    Ekzertsev, V.A., Lisitsyna, L.I., and Dovbnya, I.V., Floristic composition and production of aquatic vegetation in the Uglich Reservoir, in Flora, Fauna i mikroorganizmy Volgi (Flora, Fauna, and Microorganisms of the Volga River), Rybinsk: Inst. Biol. Vnutr. Vod AN SSSR, 1974, pp. 76–99.Google Scholar
  17. 17.
    Asaeda, T., Hal, D.N., Manatunge, J., et al., Latitudinal characteristics of below- and above-ground biomass of Typha: a modelling approach, Ann. Bot., 2005, vol. 96, pp. 299–312.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Asaeda, T., Rajapakse, L., and Fujino, T., Applications of organ-specific growth models; modelling of resource translocation and the role of emergent aquatic plants in element cycles, Ecol. Modell., 2008, vol. 215, pp. 170–179.CrossRefGoogle Scholar
  19. 19.
    Bartleson, R.D., Kemp, W.M., and Stevenson, J.C., Use of a simulation model to examine effects of nutrient loading and grazing on Potamogeton perfoliatus L. communities in microcosms, Ecol. Modell., 2005, vol. 185, pp. 483–512.CrossRefGoogle Scholar
  20. 20.
    Best, E.P.H. and Boyd, W.A., A simulation model for growth of the submersed aquatic macrophyte Eurasian watermilfoil (Myriophyllum spicatum L.), Aquatic Plant Control. Techn. Report, Vicksburg, 1999.Google Scholar
  21. 21.
    Calado, G. and Duarte, P., Modelling growth of Ruppia cirrhosa, Aquat. Bot., 2000, vol. 68, pp. 29–44.CrossRefGoogle Scholar
  22. 22.
    Hutchinon, G.E., A Treatise on Limnology. III. Limnological Botany, New York; L.; Sydney: Toronto: John Wiley & Sons, 1975Google Scholar
  23. 23.
    Lacy, R. and Blanton, J., Primary productivity and biomass distribution, in Primary Productivity and Mineral Cycling in Aquatic Macrophyte Communities of the Chovan River, North Carolina, Greenville: Department of Biology College of Arts and Sciences East Carolina Univ., 1976, pp. 8–35.Google Scholar
  24. 24.
    Van der Heide, T., Roijackers, R.M.M., Van Nes, E.H., and Peeters, E.T.H.M., A simple equation for describing the temperature dependent growth of free-floating macrophytes, Aquat. Bot., 2006, vol. 84, pp. 171–175.CrossRefGoogle Scholar
  25. 25.
    Westlake, D.F., Kvet, J., and Szczepanski, A., The Production Ecology of Wetlands, Cambridge: Cambridge Univ. Press, 1998.Google Scholar
  26. 26.
    Wolfer, S.R., van Nes, E.H., and Straile, D., Modelling the clonal growth of the rhizomatous macrophyte Potamogeton perfoliatus, Ecol. Modell., 2006, vol. 192, pp. 67–82.CrossRefGoogle Scholar
  27. 27.
    Wortmann, J., A modelling approach for determining the freshwater requirements of estuarine macrophytes, Submitted in fulfillment of the requirements for the degree of PhD: Doct. Diss. Natal., 1998.Google Scholar
  28. 28.
    Zimmerman, R.C., Cabello-Pasini, A., and Alberte, R.S., Modelling daily production of aquatic macrophytes from irradiance measurements: a comparative analysis, Mar. Ecol.: Proc. Ser., 1994, vol. 114, pp. 185–196.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Papanin Institute for Biology of Inland WatersRussian Academy of SciencesBorok, Nekouzskii raion, Yaroslavl oblastRussia

Personalised recommendations