Inland Water Biology

, Volume 7, Issue 1, pp 88–96 | Cite as

The effect of zinc oxide nano- and microparticles and zinc ions on freshwater organisms of different trophic levels

  • I. I. Tomilina
  • V. A. Gremyachikh
  • L. P. Grebenyuk
  • T. R. Klevleeva
Aquatic Toxicology

Abstract

Data on the effects of various forms of zinc compounds on the biological parameters of freshwater animals (Ceriodaphnia affinis Lillijeborg, 1862; Chironomus riparius Meigen, 1804; and Brachydanio rerio Hamilton-Buchanan, 1822) are presented. Crustacean Ceriodaphnia affinis is the most sensitive test object studied.

Keywords

zinc nanoparticles toxicity ceriodaphnia chironomids zebrafish 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grebenyuk, L.P. and Tomilina, I.I., Changes in the physiological and morphological parameters of Chironomus riparius Meigen (Diptera: Chironomidae) larvae under the action of toxic substances of different nature, Biol. Vnutr. Vod, 2006, no. 3, pp. 81–90.Google Scholar
  2. 2.
    Krysanov, E.Yu., Pavlov, D.S., Demidova, T.B., and Dgebuadze, Yu.Yu., Effect of nanoparticles on aquatic organisms, Biol. Bull. (Moscow), 2010, vol. 37, no. 4, pp. 406–412.CrossRefGoogle Scholar
  3. 3.
    Lakin, G.F., Biometriya (Biometry), Moscow: Vyssh. Shk., 1973.Google Scholar
  4. 4.
    Morgalev, Yu.N., Khoch, N.S., Morgaleva, T.G., et al., Bioassay of nanomaterials: the possibility of translocation of nanoparticles in food webs, Ros. Nanotekhnol., 2010, vol. 5, no. 11–12, pp. 98–102.Google Scholar
  5. 5.
    Nazarova, L.B., Morphological deformations of chironomid midges (Diptera, Chironomidae) due to water pollution, Usp. Sovrem. Biol., 2002, vol. 122, no. 5, pp. 516–523.Google Scholar
  6. 6.
    Tomilina, I.I., Gremyachikh, V.A., Myl’nikov, A.P., and Komov, V.T., Changes in biological characteristics of freshwater heterotrophic flagellates and cladocerans under the effect of metal oxide nano- and microparticles, Inland Water Biol., 2011, vol. 4, no. 4, pp. 475–483.CrossRefGoogle Scholar
  7. 7.
    Fedorova, I.A., Gorin, D.A., Kolesnikova, T.A., and Gusev, A.A., Analysis of the acute toxicity of polyelectrolyte microcapsules modified with zinc oxide nanoparticles and their components on aquatic organisms, Ros. Nanotekhnol., 2011, vol. 6, no. 3–4, pp. 87–96.Google Scholar
  8. 8.
    Filenko, O.F., Dmitrieva, A.G., Isakova, E.F., et al., Mechanisms of response of aquatic organisms to exposure to toxic compounds, in Antropogennye vliyaniya na vodnye ekosistemy (Anthropogenic Impact on Aquatic Ecosystems), Moscow: Izd. Mosk. Gos. Univ., 2005, pp. 70–93.Google Scholar
  9. 9.
    Shilova, A.I., Khironomidy Rybinskogo vodokhranilishcha (Chironomids of the oRybinsk Reservoir), Leningrad: Nauka, 1976.Google Scholar
  10. 10.
    Allan, R.J., The role of particular matter in the fate of contaminants in aquatic ecosystems, Sci. Ser. Inland Waters Dir. Out. Reg., 1986, no. 142, pp. 1–127.Google Scholar
  11. 11.
    Baun, A., Hartmann, N.B., Grieger, K., and Kusk, K.O., Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing, Ecotoxicology, 2008, vol. 17, pp. 387–395.PubMedCrossRefGoogle Scholar
  12. 12.
    Brayner, R., Dahoumane, S.A., Yepremian, C., et al., ZnO nanoparticles: synthesis, characterization and ecotoxicological studies, Langmuir, 2010, vol. 26, no. 9, pp. 6522–6528.PubMedCrossRefGoogle Scholar
  13. 13.
    Franklin, N., Rogers, N., Apte, S., et al., Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokircheneriella subcapitata): the importance of particle solubility, Environ. Sci. Technol., 2007, vol. 41, pp. 8484–8490.PubMedCrossRefGoogle Scholar
  14. 14.
    Heinlaan, M., Ivask, A., Blinova, I., et al., Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fisheri and crustaceans Daphnia magna, Thamnocephalus platyurus, Chemosphere, 2008, vol. 71, pp. 1308–1316.PubMedCrossRefGoogle Scholar
  15. 15.
    Hoet, P.M., Bruske-Hohlfeld, I., and Salata, O.V., Nanoparticles—known and unknown health risk, J. Nanobiotechnol., 2004, no. 2, pp. 2–12.Google Scholar
  16. 16.
    Ingersoll, C.G. and Nelson, M.K., Testing sediment toxicity with Hyalella azteca (Amphipoda) and Chironomus riparius (Diptera), in Aquatic Toxicology and Risk Assessment, Philadelphia: Amer. Soc. Test. and Mater, 1990, vol. 13, pp. 93–109.CrossRefGoogle Scholar
  17. 17.
    de Bisthoven, L., Vermeulen, A., and Ollevier, F., Experimental induction of morphological deformities in Chironomus riparius larvae by chronic exposure to copper and lead, Arch. Environ. Contam. Toxicol., 1998, vol. 35, pp. 249–256.CrossRefGoogle Scholar
  18. 18.
    Lead, J.R. and Wilkinson, K.J., Aquatic colloids and nanoparticles: current knowledge and future trends, Environ. Chem., 2006, vol. 3, pp. 159–171.CrossRefGoogle Scholar
  19. 19.
    Mount, D.I. and Norberg, T.J., A seven-day life-cycle cladoceran toxicity test, Environ. Toxicol. Chem., 1984, vol. 3, pp. 425–434.CrossRefGoogle Scholar
  20. 20.
    Schulte, C. and Nagel, R., Testing acute toxicity in the embryo of zebrafish, Brachydanio rerio, as alternative to the acute fish test: preliminary results, Altern. Lab. Anim., 1994, vol. 22, no. 1, pp. 12–19.Google Scholar
  21. 21.
    Servia, M.J., Cobo, F., and Gonzalez, M.A., Seasonal and interannual variations the frequency and severity of deformities in larvae of Chironomus riparius (Meigen, 1804) and Prodiamesa olivacea (Meigen, 1818) (Diptera, Chironomidae) collected in polluted site, Environ. Monitoring Assessment, 2000, vol. 64, pp. 617–626.CrossRefGoogle Scholar
  22. 22.
    Sokal, R.R. and Rohlf, F.J., Biometry. The Principals and Practice of Statistics in Biological Research, New York: W.H. Freeman and Co, 1995.Google Scholar
  23. 23.
    Xiong, D., Tao, F., Yu, L., et al., Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage, Sci. Total Environ., 2011, vol. 409, no. 8, pp. 1444–1452.PubMedCrossRefGoogle Scholar
  24. 24.
    Warwick, W.F., Morphological abnormalities in Chironomidae (Diptera) larvae as measures of toxic stress in freshwater ecosystems: indexing antennal deformities in Chironomus meigen, Can. J. Fish. Aquat. Sci., 1985, vol. 42, no. 12, pp. 1881–1914.CrossRefGoogle Scholar
  25. 25.
    Wei, B., Zhiyong, Z., Wenjing, T., et al., Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism, J. Nanopart. Res., 2010, vol. 12, no. 5, pp. 1645–1654.CrossRefGoogle Scholar
  26. 26.
    Zhu, X., Zhu, L., Chen, Y., and Tian, S., Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna, J. Nanopart. Res., 2008, vol. 11, no. 3, pp. 67–75.Google Scholar
  27. 27.
    Zhu, X., Zhu, L., Duan, Z., et al., Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to zebrafish (Danio rerio) early developmental stage, J. Environ. Sci. Health, 2008, vol. 43, no. 3, pp. 278–284.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • I. I. Tomilina
    • 1
  • V. A. Gremyachikh
    • 1
  • L. P. Grebenyuk
    • 1
  • T. R. Klevleeva
    • 2
  1. 1.Papanin Institute of the Biology of Inland WatersRussian Academy of SciencesBorok, Nekouzskii raion, Yaroslavl oblastRussia
  2. 2.Kazan (Privolzhskii) Federal UniversityKazanRussia

Personalised recommendations