Advertisement

Inland Water Biology

, Volume 6, Issue 2, pp 114–123 | Cite as

The effect of vital activity products of hydrophilic birds and the degree of overgrowth on zooplankton in experimental microcosms

  • A. V. Krylov
  • D. V. Kulakov
  • I. V. Chalova
  • O. L. Tselmovich
Zooplankton, Zoobenthos, and Zooperiphyton

Abstract

Experiments conducted in microcosms at different concentrations of vital activity products of hydrophilic birds (VAPBs) and the degree of overgrowth revealed basic changes in the chemical composition of the water parameters of the zooplankton. It is shown that the input of VAPBs over a period of time close to the natural nesting period leads to an increase in concentration of organic compounds in water, the diversity of crustaceans, and the total abundance and biomass of communities due to Copepoda (the portion of which also increases among dominants upon a decrease of Rotifera). Along with an increase in the degree of over-growth of microcosms subjected to the effect of VAPBs, the quantitative parameters of Rotifera development decrease and the abundance and biomass of communities increases due to Cladocera.

Keywords

vital activity products of birds degree of overgrowth organic matter planktonic invertebrates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andronikova, I.N., Strukturno-funktsional’naya organizatsiya zooplanktona ozernykh ekosistem raznykh troficheskikh tipov (Structural and Functional Organization of Zooplankton of Lake Ecosystems of Different Trophic Types), St. Petersburg: Nauka, 1996.Google Scholar
  2. 2.
    Braginskii, L.P., Dynamics of pond zooplankton and its changes under the influence of fertilizers, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Kiev, 1957.Google Scholar
  3. 3.
    Bulgakov, N.G., Levich, A.P., Nikonova, R.S., and Salomatina, T.V., The relationship between environmental parameters and production indices of a rearing fish pond, Vestn. Mosk. Univ., Ser. Biol., 1992, no. 2, pp. 57–62.Google Scholar
  4. 4.
    Vinberg, G.G. and Lyakhnovich, V.P., Udobrenie prudov (Pond Fertilization), Moscow: Legk. Prom., 1965.Google Scholar
  5. 5.
    Zhgareva, N.N., Zoophytos, in Ekosistema maloi reki v izmenyayushchikhsya usloviyakh sredy (Small River Ecosystem in a Changing Environment), Moscow: Tovar. Nauch. Izd. KMK, 2007, pp. 249–268.Google Scholar
  6. 6.
    Ivashechkina, N.B., Phytoplankton and its production in ponds of the Saratov hatchery, Sb. Tr. Gos. NII Ozer. Rech. Ryb. Khoz., 1988, no. 277, pp. 14–27.Google Scholar
  7. 7.
    Klochenko, P.D., Gorbunova, Z.N., Pasichnaya, E.A., and Kharchenko, G.V., Nekotorye Osobennosti Soderzhaniya Biogennykh Elementov V Vodnykh Makrofitakh Urbanizirovannykh Territorii: Mater. VI Vseros. Shkoly-Konf. po Vodnym Makrofitam (Some Features of the Content of Biogenic Elements in Aquatic Macrophytes of Urban Areas: Proc. Vi All-Russia School-Conference on Aquatic Macrophytes), Rybinsk, 2006, pp. 280–282.Google Scholar
  8. 8.
    Krylov, A.V., Zooplankton ravninnykh malykh rek (Zooplankton of Plain Small Rivers), Moscow: Nauka, 2005.Google Scholar
  9. 9.
    Krylov, A.V. and Akopyan, S.A., Specific features of the zooplankton of the coastal zone of Lake Sevan, Inland Water Biol., 2009, vol. 2, no. 3, pp. 254–258.CrossRefGoogle Scholar
  10. 10.
    Krylov, A.V. and Kas’yanov, N.A., Impact of Common Tern Colonies upon the Zooplankton in Rybinsk Reservoir Shallow Waters, Inland Water Biol., 2008, vol. 1, no. 2, pp. 141–149.CrossRefGoogle Scholar
  11. 11.
    Krylov, A.V., Kulakov, D.V., Kas’yanov, N.A., et al., The influence of bird colonies on the zooplankton in the Rybinsk Reservoir overgrown shallows, Inland Water Biol., 2009, vol. 2, no. 2, pp. 157–161.CrossRefGoogle Scholar
  12. 12.
    Krylov, A.V., Kulakov, D.V., and Papchenkov, V.G., Effect of water-loving bird colonies on zooplankton in littoral zones of water bodies of different types, Russ. J. Ecol., 2011, no. 6, pp. 518–524.Google Scholar
  13. 13.
    Kulakov, D.V., Ivanchev, V.P., and Krylov, A.V., Effect of the products of life activity of water-loving birds on zooplankton in the littoral zones of small lakes (Oka River basin), Povolzhsk. Ekol. Zh., 2011, no. 3, pp. 344–351.Google Scholar
  14. 14.
    Kulakov, D.V., Kosolapov, D.B., Krylov, A.V., et al., Plankton of a highly trophic lake under the influence of the products of life activity of the gray heron (Ardea cinerea L.) colonies, Povolzhsk. Ekol. Zh., 2010, no. 3, pp. 274–282.Google Scholar
  15. 15.
    Lavrent’eva, G.M., The response of the species composition of phytoplankton to the introduction of mineral nitrogen and phosphorus salts into lakes, Sb. Tr. Gos. NII Ozer. Rech. Ryb. Khoz., 1986, no. 252, pp. 31–53.Google Scholar
  16. 16.
    Levich, A.P., Bulgakov, N.G., and Nikonova, R.S., Rational Fertilization of Fish Ponds Populated by Different Species, Biol. Bull., 1996, vol. 23, no. 1, pp. 101–104.Google Scholar
  17. 17.
    Lukina, L.F. and Smirnova, N.N., Fiziologiya vysshikh vodnykh rastenii (Physiology of Higher Aquatic Plants), Kiev: Nauk. dumka, 1988.Google Scholar
  18. 18.
    Metodika vypolneniya izmerenii biokhimicheskoi potrebnosti v kislorode posle n-dnei inkubatsii (BPKpoln.) v poverkhnostnykh presnykh, podzemnykh (gruntovykh), pit’evykh, stochnykh i ochishchennykh stochnykh vodakh. PND F 14.1:2:3:4.123-97 (The Method of Measurement of Biochemical Oxygen Demand after n days of Incubation (BODcompl) in Surface Freshwater, Groundwater (Groundwater), Drinking Water, Sewage and Effluent. PND F 14.1:2:3:4.123-97), Moscow: Min. Okhr. Okruzh. Sredy i Prirod. Resur. RF, 1997.Google Scholar
  19. 19.
    Metodika vypolneniya izmerenii massovoi kontsentratsii ionov ammoniya v ochishchennykh stochnykh vodakh fotometricheskim metodom s reaktivom Nesslera. PND F 14.1.1-95 (The Method of Measurement of the Mass Concentration of Ammonium Ions in Treated Sewage Effluent by the Photometric Method with the Nessler Reagent. PND F 14.1.1-95), Moscow: Min. Okhr. Okruzh. Sredy i Prirod. Resur. RF, 1995.Google Scholar
  20. 20.
    Metodika vypolneniya izmerenii massovoi kontsentratsii nitrit-ionov v prirodnykh i stochnykh vodakh fotometricheskim metodom s reaktivom Grissa. PND F 14.1:2.3-95 (TRANSLATION), Moscow: Min. Okhr. Okruzh. Sredy i Prirod. Resur. RF, 1995.Google Scholar
  21. 21.
    Metodika vypolneniya izmerenii massovoi kontsentratsii nitrat-ionov v prirodnykh i stochnykh vodakh fotomet-richeskim metodom s salitsilovoi kislotoi. PND F 14.1:2.4-95 (The Method of Measurement of the Mass Concentration of Nitrite Ions in Natural and Waste Waters by the Photometric Method with the Griess Reagent. PND F 14.1:2.3-95), Moscow: Min. Okhr. Okruzh. Sredy i Prirod. Resur. RF, 1995.Google Scholar
  22. 22.
    Metodika vypolneniya izmerenii massovykh kontsentratsii kationov kaliya, natriya, litiya, magniya, kal’tsiya, ammoniya, strontsiya, bariya v probakh pit’evykh, prirodnykh, stochnykh vod metodom kapillyarnogo elektroforeza s ispol’zovaniem sistemy kapillyarnogo elektroforeza “Kapel”. PND F 14.1:2:4.167-2000 (The Method of Measurement of Mass Concentrations of Potassium, Sodium, Lithium, Magnesium, Calcium, Ammonium, Strontium, and Barium Cations in Samples of Drinking, Natural, and Waste Water by Capillary Electrophoresis with the Use of the Kapel’ Capillary Electrophoresis System. PND F 14.1:2:4.167-2000), Moscow: Gos. Komitet RF Okhr. Okruzh. Sredy, 2007.Google Scholar
  23. 23.
    Metodika vypolneniya izmerenii massovykh kontsentratsii khlorid-ionov, nitrit-ionov, sul’fat-ionov, nitrationov, ftorid-ionov i fosfat-ionov v probakh prirodnykh, pit’evykh i ochishchennykh stochnykh vod s primeneniem sistemy kapillyarnogo elektroforeza “Kapel’”. PND F 14.1:2:4.157-99 (The Method of Measurement of Mass Concentration of Chloride Ions, Nitrite Ions, Sulfate Ions, Nitrate Ions, Fluoride Ions and Phosphate Ions in the Samples of Natural, Drinking, and Waste Water Using the Kapel’ Capillary Electrophoresis System. PND F 14.1:2:4.157-99), Moscow: Gos. Komitet RF Okhr. Okruzh. Sredy, 2004.Google Scholar
  24. 24.
    Metodika izucheniya biogeotsenozov vnutrennikh vodoemov (The Method for Studying Biogeocenoses of Inland Water Bodies), Moscow: Nauka, 1975.Google Scholar
  25. 25.
    Metodika opredeleniya bikhromatnoi okislyaemosti (khimicheskogo potrebleniya kisloroda) v probakh prirodnykh, pit’evykh i stochnykh vod fotometricheskim metodom s primeneniem analizatora zhidkosti “Flyuorat-02”. PND F 14.1:2:4.190-03 (The Method for Determination of Bichromate Oxidation (chemical oxygen consumption) in samples of natural, drinking, and waste water by the photometric method using the Fluorat-02 liquid analyzer. PND F 14.1:2:4.190-03), Moscow: Min. Okhr. Okruzh. Sredy i Prirod. Resur. RF, 2007, p. 22.Google Scholar
  26. 26.
    Metodika opredeleniya toksichnosti vody i vodnykh vytyazhek iz pochv, osadkov stochnykh vod, otkhodov po smertnosti i izmeneniyu plodovitosti tseriodafnii. FR.1 39.2007.03221 (The Method for Determination of Water Toxicity in Aqueous Extracts from Soils, Sewage Sludge, and Waste by the Mortality Rate and Change in Fertility of Ceriodaphnia. FR.1 39.2007.03221), Moscow: AKVAROS, 2007.Google Scholar
  27. 27.
    Papchenkov, V.G., Rastitel’nyi pokrov vodoemov i vodotokov Srednego Povolzh’ya (Vegetation Cover of Water Bodies and Streams of the Middle Volga Region), Yaroslavl: Tsentr Maloi Poligrafii Mezhdunar. Univ. Biznesa i Nov. Tekhnol., 2001.Google Scholar
  28. 28.
    Tolomeev, A.P., The concept of “ecological stoichiometry” in aquatic ecosystems: a review, Sib. Ekol. Zhurn, 2006, no. 1, pp. 13–19.Google Scholar
  29. 29.
    Ul’yanov, V.N., Effect of mineral fertilizers on the development of natural forage resources in ponds, Sb. Tr. Gos. NII Ozer. Rech. Ryb. Khoz., 1988, no. 288, pp. 113–115.Google Scholar
  30. 30.
    Andersen, T. and Hessen, D.O., Carbon, nitrogen, and phosphorus content of freshwater zooplankton, Limnol. Oceanogr., 1991, vol. 36, pp. 807–814.CrossRefGoogle Scholar
  31. 31.
    Butler, N.M., Suttle, C.A., and Neill, W.A., Discrimination by fresh-water zooplankton between cells of a single algal species differing in degree of nitrogen limitation, Bull. Mar. Sci., 1988, vol. 43, no. 3, pp. 845–846.Google Scholar
  32. 32.
    Gwiazda, R., Contribution of water birds to nutrient loading to the ecosystem of mesotrophic reservoir, Ecol. Polska, 1996, vol. 44, nos. 3–4, pp. 289–297.Google Scholar
  33. 33.
    Hahn, S., Bauer, S., and Klaassen, M., Estimating the contribution of carnivorous waterbirds to nutrient loading in freshwater habitats, Freshwater Biol., 2007, vol. 52, pp. 2421–2433.CrossRefGoogle Scholar
  34. 34.
    Hahn, S., Bauer, S., and Klaassen, M., Quantification of allochthonous nutrient input into freshwater bodies by herbivorous waterbirds, Freshwater Biol., 2008, vol. 53, pp. 181–193.Google Scholar
  35. 35.
    Sterner, R.W. and Schulz, K.L., Zooplankton nutrition: recent progress and a reality check, Aquat. Ecol., 1998, vol. 32, pp. 261–279.CrossRefGoogle Scholar
  36. 36.
    Unckless, R.L. and Makarewicz, J.C., The impact of nutrient loading from Canada geese (Branta canadensis) on water quality, a mesocosm approach, Hydrobiologia, 2007, vol. 586, pp. 393–401.CrossRefGoogle Scholar
  37. 37.
    Wiece, G., Mayer, H.-G., Jorda, W., and Bahr, I., Phosphoraufnahme durche potamogeton natans und submerse makrophyten in einem fliessgewasser laboratoriumsmodel, Acta Hydrochim. Hydrobiol., 1985, vol. 13, no. 3, pp. 307–317.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. V. Krylov
    • 1
  • D. V. Kulakov
    • 1
  • I. V. Chalova
    • 1
  • O. L. Tselmovich
    • 1
  1. 1.Papanin Institute of the Biology of Inland WatersRussian Academy of SciencesBorokRussia

Personalised recommendations