Inland Water Biology

, Volume 5, Issue 1, pp 119–127 | Cite as

Changes in heart rate and circadian cardiac rhythm as physiological biomarkers for estimation of functional state of crayfish Pontastacus leptodactylus Esch. upon acidification of the environment

  • G. P. Udalova
  • S. V. Kholodkevich
  • V. P. Fedotov
  • E. L. Kornienko
Ecological Physiology and Biochemistry of Hydrobionts


The changes in heart rate and circadian cardiac rhythm of crayfish Pontastacus leptodactylus Esch. kept in a lightning regime that is close to natural under optimal or low pH values were studied. The heart rate was registered in real time using an original noninvasive fiberoptic method. Upon acidification, disorders in circadian cardiac rhythm and organism reaction (by heart rate) in the suspension test were detected. The characteristics of cardiac activity are considered criteria for estimating the crayfish’s functional state at normal and stress conditions caused by the changes in the quality of the environment.


crayfish cardiac activity circadian rhythm suspension test acidification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baevskii, P.M. and Berseneva, A.L., Otsenka adaptatsionnykh vozmozhnostei organizma i risk razvitiya zabolevanii (Assessment of Adaptive Capacity of the Body and the Risk of Disease Development), Moscow: Meditsina, 1997.Google Scholar
  2. 2.
    Vinogradov, G.A., Komov, V.T., and Matei, V.E., Functional Basis of the Effect of Low pH on Fish and Crayfish, in Fiziologicheskie i biokhimicheskie aspekty toksikologii presnovodnykh zhivotnykh (Physiological and Biochemical Aspects of Toxicology of Freshwater Animals), Borok: Inst. Biol. Vnutr. Vod Akad. Nauk SSSR, 1984, pp. 147–190.Google Scholar
  3. 3.
    Moiseenko, T.I., Effects of Acidification on Aquatic Ecosystems, Russ. J. Ecol., 2005, vol. 36, no. 2, pp. 93–102.CrossRefGoogle Scholar
  4. 4.
    Udalova, G.P., Kholodkevich, S.V., Sladkova, S.V., et al., Study of Circadian Activity in the Crayfish Pontastacus leptodactylus during Their Multimonth Stay in the River Water Flow, Zh. Evol. Biokhim. Fiziol., 2009, vol. 45, no. 3, pp. 304–312.PubMedGoogle Scholar
  5. 5.
    Fedotov, V.P., Kholodkevich, S.V., and Strochilo, A.G., Heart Activity of the Crayfish Astacus astacus in Various Functional States, Zh. Evol. Biokhim. Fiziol., 2002, vol. 38, no. 1, pp. 36–4.PubMedGoogle Scholar
  6. 6.
    Fedotov, V.P., Kholodkevich S.V., Udalova G.P. Crayfish Heart Activity in Awake, Rest and “Animal” Hypnosis, Zh. Evol. Biokhim. Fiziol., 2006, vol. 42, no. 1, pp. 41–48.PubMedGoogle Scholar
  7. 7.
    Fedotov, V.P., Shumilova, T.E., Kholodkevich, S.V., and Strochilo, A.G., Noninvasive Method for Estimating the Parameters of Functioning of the Heart of Crustaceans, in Mater. Region. Soveshch. Mezhdunar. Assotsiatsii Astakologov (Proc. Regional Conf. Int. Association of Astacologists,) Astrakhan’, 2002, pp. 49–57.Google Scholar
  8. 8.
    Kholodkevich, S.V., Real-Time Bioelectronic Monitoring of Toxicity of Natural and Waste Waters, Ekol. Khim., 2007, vol. 16, no. 4, pp. 223–232.Google Scholar
  9. 9.
    Kholodkevich, S.V., Ivanov, A.V., Kornienko, E.L., and Kurakin, A.S., Method of Biological Monitoring of the Environment (Options) and the System for Its Implementation, RF Patent No. 2308720 C1, Byull. Izorbet., 2007, no. 29.Google Scholar
  10. 10.
    Tsukerzis, Ya.M., Rechnye raki (Crayfish), Vilnus: Mokslas, 1989.Google Scholar
  11. 11.
    Aagaard, A., Warman, C.G., and Depledge, M.H., The Use of Cardiac Monitoring in the Assessment of Mercury Toxicity in the Subtropical Pebble Crab Gsetice depressus (Brachyura: Grapsidae; Varuninae), Sci. Mar., 2000, vol. 64, no. 4, pp. 381–386.CrossRefGoogle Scholar
  12. 12.
    Allison, V., Dunham, D.W., and Harvey, H.H., Low pH Alter Response to the Crayfish Cambarus bartoni, Can. J. Zool., 1992, vol. 70, no. 2, pp. 2416–2420.CrossRefGoogle Scholar
  13. 13.
    Appelberg, M., Changes in Haemolymph Ion Concentrations of Astacus astacus L. and Pacifastacus lenticulus (Dana) after Exposure to Low pH and Aluminium, Hydrobiologia, 1985, vol. 121, pp. 19–25.CrossRefGoogle Scholar
  14. 14.
    Bamber, S.D. and Depledge, M.H., Evaluation of Changes in the Adaptive Physiology of Shore Crabs (Carcinus maenas) as an Indicator of Pollution in Estuarine Environments, Mar. Biol. (Berlin), 1997, vol. 129, no. 3, pp. 667–672.CrossRefGoogle Scholar
  15. 15.
    Depledge, M.H., Aagaard, A., and Gyorkos, P., Assessment of Trace Metal Toxicity using Molecular, Physiological and Behavioural Biomarkers, Mar. Pol. Bull., 1995, vol. 31, nos. 1–3, pp. 19–27.CrossRefGoogle Scholar
  16. 16.
    Depledge, M.H. and Andersen, B.B., A Computer-Aided Physiological Monitoring System for Continuous, Long-Term Recording of Cardiac Activity in Selected Invertebrates, Comp. Biochem. Physiol., 1990, vol. 96A, no. 4, pp. 473–477.CrossRefGoogle Scholar
  17. 17.
    Di Stefano, R.J., Neves, R.J., Helfrich, L.A., and Lewis, M.C., Response of the Crayfish Cambarus bartonii bartonii to Acid Exposure in Southern Appalachian Streams, Can. J. Zool., 1991, vol. 89, pp. 1585–1591.CrossRefGoogle Scholar
  18. 18.
    Ehrenfeld, J., Aspects of Ionic Transport Mechanisms in Crayfish Astacus leptodactylus, J. Exp. Biol., 1974, vol. 61, pp. 57–70.PubMedGoogle Scholar
  19. 19.
    Fingerman, M. and Lago, A.D., Endogenous Twenty-Four Hour Rhythms of Locomotor Activity and Oxygen Consumption in the Crayfish Orconectes clypeatus, Amer. Midland. Natur., 1957, vol. 58, pp. 383–393.CrossRefGoogle Scholar
  20. 20.
    France, R.L., Comparative Tolerance to Low pH of Three Life Stages of the Crayfish Orconektes virilisi, Can. J. Zool., 1984, vol. 62, pp. 2360–2363.CrossRefGoogle Scholar
  21. 21.
    Kholodkevich, S.V., Ivanov, A.V., Kurakin, A.S., et al., Real Time Biomonitoring of Surface Water Toxicity Level at Water Supply Stations, J. Environ. Bioindicators, 2008, vol. 3, no. 1, pp. 23–34.CrossRefGoogle Scholar
  22. 22.
    McMahon, B.R., Physiological Adaptation to Environment, in Biology of Freshwater Crayfish, Oxford: Blackwell Science, 2002, pp. 327–376.Google Scholar
  23. 23.
    Newcombe, K.J., The pH Tolerance of the Crayfish Parastacoides tasmanicus (Erichson) (Decapoda, Parastacidae), Crustaceana, 1975, vol. 29, no. 3, pp. 231–234.CrossRefGoogle Scholar
  24. 24.
    Nikinmaa, M., Jarvenpaa, T., Westman, K., Soivio, A., Effect of Hypoxia and Acidification on the Haemolymph pH Values and Ion Concentration in the Freshwater Crayfish Astacus astacus L., Finish Fisheries Res., 1983, vol. 5, pp. 17–22.Google Scholar
  25. 25.
    Styrishave, B., Rasmusson, A.D. and Depledge, M.H., The Influence of Bulk and Trace Metals on the Circadian Rhythmicity of Heart Rates in Freshwater Crayfish Astacus astacus, Mar. Poll. Bull., 1995, vol. 31, pp. 87–92.CrossRefGoogle Scholar
  26. 26.
    Tierney, A.J. and Atema, J., Effects of Acidification on the Behavioral Response of Crayfishes (Orconektes virilisi and Procambarus acutus) to Chemical Stimuli, Aquat. Toxicol., 1986, vol. 9, pp. 1–11.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • G. P. Udalova
    • 1
  • S. V. Kholodkevich
    • 1
  • V. P. Fedotov
    • 1
  • E. L. Kornienko
    • 1
  1. 1.St. Petersburg Research Center of Ecological SafetyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations