Inland Water Biology

, 4:47 | Cite as

The dynamics of abundance of Simocephalus vetulus (O.F. Müller, 1776) (Crustacea, Cladocera) under acyclic stepwise changes in temperature

Zooplankton, Zoobenthos, and Zooperiphyton


This experimental study examines the influence that acyclic stepwise temperature regimes with 4.4 and 8.8°C increments in a range of 14.8 to 25.5°C have on the dynamics of the number of Simocephalus vetulus (O.F. Müller). It is revealed that an increase in the number of this dominant species of littoral zooplankton may be stimulated by differently directed acyclic stepwise changes in temperature. However, the maximal development of the population is registered after a decrease in water temperature from 24.3 ± 0.7 to 20.4 ± 0.5°C and from 19.9 ± 0.8 to 15.5 ± 0.4°C. Under the same temperature conditions, a prolonged stimulating effect is observed. Our results confirm the assumption put forward earlier that, in order to define the real ecological optimum for a species by a specific environmental factor, it is necessary to consider not only the limits of the optimal values of the factor, but also the dynamics of their changes and the possibility of after-effects of the factor (prolonged and delayed effects).


Cladocera Simocephalus vetulus dynamics of number prolonged stimulating effect delayed effect stepwise impacts temperature 


  1. 1.
    Verbitskii, V.B., The Concept of Ecological Optimum and Its Determination in Freshwater Poikilothermic Animals, Zh. Obshch. Biol., 2008, vol. 69, no. 1, pp. 44–56.PubMedGoogle Scholar
  2. 2.
    Verbitskii, V.B. and Verbitskaya, T.I., Ecological Optimum and Effect of Delayed Action of a Factor, Dokl. Akad. Nauk, Ser. Biol., 2007, vol. 416, no. 6, pp. 830–832 [Dokl. (Engl. Transl.), 2007, vol. 416, no. 6, pp. 386–388].Google Scholar
  3. 3.
    Verbitskii, V.B., Verbitskaya, T.I., and Malysheva, O.A., The Influence of Various Temperature Regimes on the Abundance Dynamics and Thermal Tolerance of Cladoceran Ceriodaphnia quadrangular (O.F. Müller, 1785), Biol. Vnutr. Vod, 2008, no. 4, pp. 98–103 [Inland Water Biol. (Engl. Transl.), 2009, no. 1, pp. 67–72].Google Scholar
  4. 4.
    Verbitskii, V.B., Verbitskaya, T.I., and Malysheva, O.A., Population Dynamics of Daphnia longispina (O.F.Müller, 1785) and Diaphanosoma brachyurum (Lievin, 1848) (Crustacea, Cladocera) under Stable and Graded Temperature Regimes, Izv. Akad. Nauk, Ser. Biol., 2009, no. 1, pp. 79–87 [Biol. Bull. (Engl. Transl.), 2009, vol. 36, no. 1, pp. 66–73].Google Scholar
  5. 5.
    Gilyarov, A.M., Populyatsionnaya ekologiya (Population Ecology), Moscow: Mosk. Gos. Univ., 1990.Google Scholar
  6. 6.
    Dajos, R., Fundamentals of Ecology, Paris: Gauthier-Villars, 1972.Google Scholar
  7. 7.
    Kiselev, I.A., Plankton morei i kontinental’nykh vodoemov (Plankton of Seas and Continental Water Bodies), Leningrad: Nauka, 1969.Google Scholar
  8. 8.
    Konstantinov, A.S., Effect of Temperature Fluctuations on the Growth, Energy, and Physiological State of Fish Fries, Izv. Akad. Nauk, Ser. Biol., 1993, no. 1, pp. 55–63.Google Scholar
  9. 9.
    Konstantinov, A.S., Vechkanov, V.S., Kuznetsov, V.A., and Ruchin, A.B., Variations in the Abiotic Environment as a Prerequisite for Optimal Rana temporaria L. Larval Development, Dokl. Akad. Nauk, 2000, vol. 371, no. 4, pp. 559–562 [Dokl. (Engl. Transl.), 2000, vol. 371, pp. 182–185].Google Scholar
  10. 10.
    Konstantinov, A.S., Pushkar’, V.Ya., and Aver’yanova, O.V., Effects of Fluctuations of Abiotic Factors on the Metabolism of Some Hydrobionts, Izv. Akad. Nauk, Ser. Biol., 2003, no. 6, pp. 728–734 [Biol. Bull. (Engl. Transl.), 2003, vol. 30, no. 6, pp. 610–616].Google Scholar
  11. 11.
    Kolosova, E.G., The Temperature Factor and the Distribution of Abundant Zooplankton Species in the White Sea, Okeanologiya, 1975, vol. 15, no. 1, pp. 129–133.Google Scholar
  12. 12.
    Metodika izucheniya biogeotsenozov vnutrennikh vodoemov (The Method of Studying Biogeocenoses of Inland Water Bodies), Moscow: Nauka, 1975, 240 p.Google Scholar
  13. 13.
    Sarviro, V.S., On the Determination of the Optimum Temperature of Poikilothermic Animals, Ekologiya, 1977, vol. 18, no. 1, pp. 14–18.Google Scholar
  14. 14.
    Sarviro, V.S., Ecological Assessment of the Influence of Temperature Fluctuations on the Growth Parameters of the Amphipod Gammarus lacustris Sars, Gidrobiol. Zh., 1983, vol. 19, no. 4, pp. 71–73.Google Scholar
  15. 15.
    Semenchenko, V.P., Razlutskii, V.I., and Feneva, I.Yu., Biotic Interactions as a Factor Influencing the Success of the Invasion of Cladocerans into Aquatic Communities, in Chuzherodnye vidy v Golarktike (Borok-2): Tez. Dokl. Vtorogo Mezhdunar. Simp. po izucheniyu invazynykh vidov (Alien Species in Holarctic (Borok-2), Abstr. Second Int. Symp. on Studying Invasive Species), Rybinsk, 2005, pp. 116–117.Google Scholar
  16. 16.
    Allan, J.D., An Analysis of Seasonal Dynamics of a Mixed Population of Daphnia and the Associated Cladoceran Community, Freshwater Biol., 1977, vol. 7, pp. 505–512.CrossRefGoogle Scholar
  17. 17.
    Balayla, D.J. and Moss, B., Spatial Patterns and Population Dynamics of Plant-Associated Microcrustacea (Cladocera) in an English Shallow Lake (Little Mere, Cheshire), Aquatic Ecol., 2003, vol. 37, pp. 417–435.CrossRefGoogle Scholar
  18. 18.
    Bertilsson, J., Berzing, B., and Pejler, B., Occurrence of Limnic Micro-Crustaceans in Relation to Temperature and Oxygen, Hydrobiologia, 1995, vol. 299, pp. 163–167.CrossRefGoogle Scholar
  19. 19.
    Bevan, L., Wallen, D.G., and Winner, J.M., The Effect of Temperature, Irradiance and Animal Size on Incorporation Rates of Simocephalus vetulus, Hydrobiologia, 1980, vol. 69, nos. 1–2, pp. 73–78.CrossRefGoogle Scholar
  20. 20.
    De Bernardi, R., Lacqua, P., and Soldavini, E., Effects of Temperature and Food on Developmental Times and Growth in Daphnia obtusa (Kurz) and Simocephalus vetulus (O.F. Müller) (Crustacea, Cladocera), Mem. Ist. Ital. Idrobiol., 1978, vol. 36, pp. 171–191.Google Scholar
  21. 21.
    DeMott, W.R. and Gulati, R.D., Phosphorus Limitation in Daphnia: Evidence from a Long Term Study of Three Hypereutrophic Dutch Lakes, Limnol. Oceanogr., 1999, vol. 44, no. 6, pp. 1557–1564.CrossRefGoogle Scholar
  22. 22.
    Forasacco, E., Leoni, B., Fontvieille, D., and Cotta-Ramusino, M., Warning System for Ecosystem-Wide Changes, and to Be a Model Species for Toxicogenomic Analysis of Metal(s) Exposure and Effect in Natural Populations, VIIth Int. Symp. on Cladocera. Abstr. Book, Herzberg, 2005, pp. 12–14.Google Scholar
  23. 23.
    Grant, M.A. and Janzen, F.J., Phenotypic Variation in Smooth Softshell Turtles (Apalone mutica) from Eggs Incubated in Constant Versus Fluctuating Temperatures, Oecologia, 2003, vol. 134, pp. 182–188.Google Scholar
  24. 24.
    Halbach, U., Life Table Data and Population Dynamics of the Rotifer Brachionus calyciflorus Pallas as Influenced by Periodically Oscillating Temperature, in Effects of Temperature on the Ectotermic Organisms, Heidelberg: Springer, 1973, pp. 217–228.Google Scholar
  25. 25.
    Hanasato, T. and Yasuno, M., Effect of Temperature in the Laboratory Studies on Growth, Egg Development and First Parturition of Five Species of Cladocera, Jap. J. Limnol., 1985, vol. 46, no. 3, pp. 185–191.Google Scholar
  26. 26.
    Hann, B.J. and Zrum, L., Littoral Microcrustaceans (Cladocera, Copepoda) in a Prairie Coastal Wetland: Seasonal Abundance and Community Structure, Hydrobiologia, 1997, vol. 357, pp. 37–52.CrossRefGoogle Scholar
  27. 27.
    Khan, P.M., The Effect of Constant and Varying Temperatures on the Development of Acanthocyclops viridis (Jurine), Proc. Roy. Trish. Acad. Ser. B, 1965, no. 64, pp. 117–130.Google Scholar
  28. 28.
    LaBerge, S. and Hann, B.J., Acute Temperature and Oxygen Stress among Genotypes of Daphnia pulex and Simocephalus vetulus (Cladocera, Daphniidae) in Relation to Environmental Conditions, Can. J. Zool., 1990, vol. 68, no. 11, pp. 2257–2263.CrossRefGoogle Scholar
  29. 29.
    Lock, A.R. and McLaren, I.A., The Effects of Varying and Constant Temperatures on the Size of Marine Copepods, Limnol. Oceanogr, 1970, vol. 2, no. 15, pp. 638–640.CrossRefGoogle Scholar
  30. 30.
    Manca, M., de Bernardi, R., and Savia, A., Effects of Fluctuating Temperature and Light Conditions on the Population Dynamics and the Life Strategies of Migrating and Non-Migrating Daphnia Species, Mem. Ist. Ital. Idrobiol., 1986, vol. 244, pp. 177–202.Google Scholar
  31. 31.
    Monro, I.G., The Effect of Temperature on the Development of Egg, Naupliar and Copepodite Stages of Two Species of Copepoda: Cyclops vicinus Uljanin and Eudiaptomus gracilis Sars, Oecologia, 1974, vol. 16, no. 3, pp. 265–278.Google Scholar
  32. 32.
    Nandini, S. and Sarma, S.S.S., Lifetable Demography of Four Cladoceran Species in Relation to Algal Food (Chlorella vulgaris) Density, Hydrobiologia, 2000, vol. 435, pp. 117–126.CrossRefGoogle Scholar
  33. 33.
    Nandini, S. and Sarma, S.S.S., Population Growth of Some Genera of Cladocerans (Cladocera) in Relation to Algal Food (Chlorella vulgaris) Levels, Hydrobiologia, 2003, vol. 491, pp. 211–219.CrossRefGoogle Scholar
  34. 34.
    Orcutt, J.D. and Porter, K.G., Diel Vertical Migration by Zooplankton: Constant and Fluctuating Temperature Effects on Life History Parameters of Daphnia, Limnol. Oceanogr, 1983, vol. 28, no. 4, pp. 720–730.CrossRefGoogle Scholar
  35. 35.
    Perrow, M.R., Jowitt, A.J.D., Stansfield, J.H., and Phillips, G.L., The Practical Importance of the Interactions between Fish, Zooplankton and Macrophytes in Shallow Restoration, Hydrobiologia, 1999, vol. 395/396, pp. 199–210.CrossRefGoogle Scholar
  36. 36.
    Pilditch, C.A. and Grant, J., Effect of Temperature Fluctuations and Food Supply on the Growth and Metabolism of Juvenile Sea Scallops (Placopecten magellanicus), Mar. Biol. (Berlin), 1999, vol. 134, pp. 235–248.CrossRefGoogle Scholar
  37. 37.
    Sarma, N., García, E.C., and Sarma, S.S.S., Increase of the Salinity in the Lagoon Cabiúnas Seems to Favor the Species Indirectly, View as Weak Competitor, Reducing the Potential of Stronger Competitors, in VIIth Int. Symp. on Cladocera. Abstr. Book, Herzberg, 2005, p. 40.Google Scholar
  38. 38.
    Semenchenko, V.P., Razlutskii, V.I., Feniova, I.Yu., and Aibulatov, D.N., Biotic Relations Affecting Species Structure in Zooplankton Communities, Hydrobiologia, 2007, vol. 579, pp. 219–231.CrossRefGoogle Scholar
  39. 39.
    Schulz, K.L. and Sterner, R.W., Phytoplankton Phosphorus Limitation and Food Quality for Bosmina, Limnol. Oceanogr, 1999, vol. 44, no. 6, pp. 1549–1556.CrossRefGoogle Scholar
  40. 40.
    Sharitz, R.R. and Luvall, J.C., Growth of Duckweed under Constant and Variable Temperatures, in Energy and Environmental Stress in Aquatic Systems. DOE Symp. Ser. (CONF-77I114), Springfield: Nat. Tech. Inf. Serv., 1978.Google Scholar
  41. 41.
    Stansfield, J.H., Perrow, M.R., Tench, L.D., et al., Submerged Macrophytes as Refuges for Grazing Cladocera Against Fish Predation: Observations on Seasonal Changes in Relation to Macrophyte Cover and Predation Pressure, Hydrobiologia, 1997, vol. 342/343, pp. 229–240.CrossRefGoogle Scholar
  42. 42.
    Tappa, D.W., The Dynamics and the Association of Six Limnetic Species of Daphnia in Aziscoos Lake, Maine, Ecol. Monogr., 1965, vol. 35, pp. 395–423.CrossRefGoogle Scholar
  43. 43.
    Thorp, J.H. and Wineriter, S.A., Stress and Growth Response of Juvenile Crayfish to Rhythmic and Arrhythmic Temperature Fluctuations, Arch. Environ. Contam. Toxicol., 1981, vol. 10, pp. 69–77.PubMedCrossRefGoogle Scholar
  44. 44.
    Van Doorslaer, W., Stocks, R., Jeppesen, E., and Meester, L., Adaptive Microevolutionary Responses to Simulated Global Warming in Simocephalus vetulus: A Mesocosm Study, Global Change Biol., 2007, vol. 13, pp. 878–886.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Papanin Institute of the Biology of Inland WatersRussian Academy of SciencesBorokRussia

Personalised recommendations