Machine Learning for Finding Suboptimal Final Times and Coherent and Incoherent Controls for an Open Two-Level Quantum System

Abstract

This work considers an open two-level quantum system evolving under coherent and incoherent piecewise constant controls constrained in their magnitude and variations. The control goal is to steer an initial pure density matrix into a given target density matrix in a minimal time. A machine learning algorithm was developed, which combines the approach of \(k\) nearest neighbors and training a multi-layer perceptron neural network, to predict suboptimal final times and controls. For 18 sets of initial pure states with different size (between 10 and 200) training datasets were constructed. The numerical results are described, including the analysis of the dependence of the quality of the machine learning algorithm on the size of the training set.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. 1

    S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, ‘‘Training Schrödinger’s cat: Quantum optimal control. Strategic report on current status, visions and goals for research in Europe,’’ Eur. Phys. J. D 69, 279 (2015). https://doi.org/10.1140/epjd/e2015-60464-1

    Article  Google Scholar 

  2. 2

    A. G. Butkovskiy and Y. I. Samoilenko, Control of Quantum-Mechanical Processes and Systems (Nauka, Moscow, 1984; Kluwer Acad. Publ., Dordrecht, 1990).

  3. 3

    M. Shapiro and P. Brumer, Principles of the Quantum Control of Molecular Processes (Wiley, Hoboken, 2003).

    Google Scholar 

  4. 4

    D. J. Tannor, Introduction to Quantum Mechanics: A Time Dependent Perspective (Univ. Science Books, Sausilito, CA, 2007). https://www.uscibooks.com/tannor.htm.

    Google Scholar 

  5. 5

    D. D’Alessandro, Introduction to Quantum Control and Dynamics (CRC Press, Boca Raton, 2007).

    Google Scholar 

  6. 6

    V. Letokhov, Laser Control of Atoms and Molecules (Oxford Univ. Press, New York, 2007).

    Google Scholar 

  7. 7

    A. L. Fradkov, Cybernetical Physics. From Control of Chaos to Quantum Control (Springer, New York, 2007).

    Google Scholar 

  8. 8

    C. Brif, R. Chakrabarti, and H. Rabitz, ‘‘Control of quantum phenomena: Past, present and future,’’ New J. Phys. 12, 075008 (2010). https://doi.org/10.1088/1367-2630/12/7/075008

  9. 9

    H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge Univ. Press, Cambridge, 2010).

    Google Scholar 

  10. 10

    D. Dong and I. R. Petersen, ‘‘Quantum control theory and applications: A survey,’’ IET Control Theory Appl. 4, 2651–2671 (2010). http://dx.doi.org/10.1049/iet-cta.2009.0508

    MathSciNet  Article  Google Scholar 

  11. 11

    K. W. Moore, A. Pechen, X.-J. Feng, J. Dominy, V. J. Beltrani, and H. Rabitz, ‘‘Why is chemical synthesis and property optimization easier than expected?,’’ Phy. Chem. Chem. Phys. 13, 10048–10070 (2011). https://doi.org/10.1039/C1CP20353C

    Article  Google Scholar 

  12. 12

    A. M. Zagoskin, Quantum Engineering. Theory and Design of Quantum Coherent Structures (Cambridge Univ. Press, Cambridge, 2011).

    Google Scholar 

  13. 13

    C. P. Koch, ‘‘Controlling open quantum systems: Tools, achievements, and limitations,’’ J. Phys.: Condens. Matter 28, 213001 (2016). https://doi.org/10.1088/0953-8984/28/21/213001

  14. 14

    O. V. Morzhin and A. N. Pechen, ‘‘Krotov method for optimal control of closed quantum systems,’’ Russ. Math. Surv. 74, 851–908 (2019). https://doi.org/10.1070/RM9835

    MathSciNet  Article  MATH  Google Scholar 

  15. 15

    A. Pechen and H. Rabitz, ‘‘Teaching the environment to control quantum systems,’’ Phys. Rev. A 73, 062102 (2006). https://doi.org/10.1103/PhysRevA.73.062102

  16. 16

    A. Pechen, N. Il’in, F. Shuang, and H. Rabitz, ‘‘Quantum control by von Neumann measurements,’’ Phys. Rev. A 74, 052102 (2006). https://doi.org/10.1103/PhysRevA.74.052102

  17. 17

    A. Pechen, ‘‘Engineering arbitrary pure and mixed quantum states,’’ Phys. Rev. A 84, 042106 (2011). https://doi.org/10.1103/PhysRevA.84.042106

  18. 18

    A. N. Pechen and A. S. Trushechkin, ‘‘Measurement-assisted Landau-Zener transitions,’’ Phys. Rev. A 91, 052316 (2015). https://doi.org/10.1103/PhysRevA.91.052316

  19. 19

    D.-Y. Dong, C.-L. Chen, T.-J. Tarn, A. Pechen, and H. Rabitz, ‘‘Incoherent control of quantum systems with wavefunction controllable subspaces via quantum reinforcement learning,’’ IEEE Trans. Syst., Man Cybern., Part B 38, 957–962 (2008). https://doi.org/10.1109/TSMCB.2008.926603

    Article  Google Scholar 

  20. 20

    M. Y. Niu, S. Boixo, V. N. Smelyanskiy, and H. Neven, ‘‘Universal quantum control through deep reinforcement learning’’ npj Quantum Inform. 5, 33 (2019). https://doi.org/10.1038/s41534-019-0141-3

  21. 21

    J. P. P. Zauleck and R. de Vivie-Riedle, ‘‘Constructing grids for molecular quantum dynamics using an autoencoder,’’ J. Chem. Theory Comput. 14, 55–62 (2018). https://doi.org/10.1021/acs.jctc.7b01045

    Article  Google Scholar 

  22. 22

    S. C. Hou and X. X. Yi, ‘‘Quantum Lyapunov control with machine learning,’’ Quantum Inf. Process. 19 (1), 8 (2020). https://doi.org/10.1007/s11128-019-2470-8

    MathSciNet  Article  Google Scholar 

  23. 23

    P. Palittapongarnpim and B. C. Sanders, ‘‘Enter the machine,’’ Nat. Phys. 14, 432–433 (2018). https://doi.org/10.1038/s41567-018-0061-8

    Article  Google Scholar 

  24. 24

    G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko, and G. Carleo, ‘‘Neural-network quantum state tomography,’’ Nat. Phys. 14, 447–450 (2018). https://doi.org/10.1038/s41567-018-0048-5

    Article  Google Scholar 

  25. 25

    J. Gao, L.-F. Qiao, Z.-Q. Jiao, Y.-C. Ma, C.-Q. Hu, R.-J. Ren, A.-L. Yang, H. Tang, M.-H. Yung, and X.-M. Jin, ‘‘Experimental machine learning of quantum states,’’ Phys. Rev. Lett. 120, 240501 (2018). https://doi.org/10.1103/PhysRevLett.120.240501

  26. 26

    I. A. Luchnikov, S. V. Vintskevich, D. A. Grigoriev, and S. N. Filippov, ‘‘Machine learning non-Markovian quantum dynamics,’’ Phys. Rev. Lett. 24, 140502 (2020). https://doi.org/10.1103/PhysRevLett.124.140502

  27. 27

    O. V. Morzhin and A. N. Pechen, ‘‘Minimal time generation of density matrices for a two-level quantum system driven by coherent and incoherent controls,’’ Int. J. Theor. Phys. (2019). https://10.1007/s10773-019-04149-w.

  28. 28

    O. V. Morzhin and A. N. Pechen, ‘‘Maximization of the overlap between density matrices for a two-level open quantum system driven by coherent and incoherent controls,’’ Lobachevskii J. Math. 40 (10), 1532–1548 (2019). https://doi.org/10.1134/S1995080219100202

    MathSciNet  Article  MATH  Google Scholar 

  29. 29

    O. V. Morzhin and A. N. Pechen, ‘‘Maximization of the Uhlmann–Jozsa fidelity for an open two-level quantum system with coherent and incoherent controls,’’ Phys. Part. Nucl. 51 (4), 464–469 (2020). https://doi.org/10.1134/S1063779620040516

    Article  Google Scholar 

  30. 30

    A. C. Müller and S. Guido, Introduction to Machine Learning with Python: A Guide for Data Scientists (O’Reilly Media, Sebastopol, CA, 2016).

    Google Scholar 

  31. 31

    I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (The MIT Press, Cambridge, MA, 2017).

    Google Scholar 

  32. 32

    A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd ed. (O’Reilly Media, Sebastopol, CA, 2019).

    Google Scholar 

  33. 33

    A. J. Meade and A. A. Fernandez, ‘‘The numerical solution of linear ordinary differential equations by feedforward neural networks,’’ Math. Comput. Model. 19 (12), 1–25 (1994). https://doi.org/10.1016/0895-7177(94)90095-7

    MathSciNet  Article  MATH  Google Scholar 

  34. 34

    R. Storn and K. Price, ‘‘Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces,’’ J. Global Optimiz. 11, 341–359 (1997). https://doi.org/10.1023/A:1008202821328

    MathSciNet  Article  MATH  Google Scholar 

  35. 35

    Dual Annealing Optimization in SciPy. https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.dual_annealing.html.

  36. 36

    C. Tsallis and D. A. Stariolo, ‘‘Generalized simulated annealing,’’ Phys. A (Amsterdam, Neth.) 233, 395–406 (1996). https://doi.org/10.1016/S0378-4371(96)00271-3

  37. 37

    Y. Xiang and X. G. Gong, ‘‘Efficiency of generalized simulated annealing,’’ Phys. Rev. E 62, 4473–4476 (2000). https://doi.org/10.1103/PhysRevE.62.4473

    Article  Google Scholar 

  38. 38

    Differential Evolution Optimization in SciPy. https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html.

  39. 39

    L. Accardi, Y. G. Lu, and I. V. Volovich, Quantum Theory and Its Stochastic Limit (Springer, Berlin Heidelberg, 2002).

    Google Scholar 

  40. 40

    H.-P. Breuer and F. Petruccione, Quantum Systems, Channels, Information (Oxford Univ. Press, New York, 2007).

    Google Scholar 

  41. 41

    E. A. Rakhmanov, E. B. Saff, and Y. M. Zhou, ‘‘Minimal discrete energy on the sphere,’’ Math. Res. Lett. 1, 647–662 (1994). https://doi.org/10.4310/MRL.1994.v1.n6.a3

    MathSciNet  Article  MATH  Google Scholar 

  42. 42

    E. B. Saff and A. B. J. Kuijlaars, ‘‘Distributing many points on a sphere,’’ Math. Intell. 19, 5–11 (1997). https://doi.org/10.1007/BF03024331

    MathSciNet  Article  MATH  Google Scholar 

  43. 43

    Matplotlib, Plotting Library. https://matplotlib.org/.

  44. 44

    Solving Ordinary Differential Equations with scipy.integrate.odeint. https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html.

  45. 45

    \(R^{2}\) Score, the Coefficient of Determination. https://scikit-learn.org/stable/modules/model_evaluation.html #r2-score.

  46. 46

    Multi-Layer Perceptron Regressor in Scikit-Learn. https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html.

  47. 47

    Neural Network Models Supervised in Scikit-Learn. https://scikit-learn.org/stable/modules/neural_networks_supervised.html.

  48. 48

    D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’ arXiv:1412.6980 [cs.LG] (2014). https://arxiv.org/abs/1412.6980.

  49. 49

    sqlite3 Module. https://docs.python.org/3/library/sqlite3.html.

  50. 50

    pickle Module. https://docs.python.org/3/library/pickle.html.

  51. 51

    Least Squares Polynomial Fit with numpy.polyfit. https://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html.

Download references

Funding

Derivation of the dynamical equations given in Section 2.2 was performed in [27] within the project no. 1.669.2016/1.4 of the Ministry of Science and Higher Education of the Russian Federation. Other results were obtained within the project of the Russian Science Foundation no. 17-11-01388 in Steklov Mathematical Institute of Russian Academy of Sciences.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to O. V. Morzhin or A. N. Pechen.

Additional information

(Submitted by S. A. Grigoryan)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morzhin, O.V., Pechen, A.N. Machine Learning for Finding Suboptimal Final Times and Coherent and Incoherent Controls for an Open Two-Level Quantum System. Lobachevskii J Math 41, 2353–2368 (2020). https://doi.org/10.1134/S199508022012029X

Download citation

Keywords:

  • open quantum system
  • quantum control
  • machine learning