The Energy Efficiency Evaluating Method Determining Energy Consumption of the Parallel Program According to Its Profile

Abstract

The paper is devoted to the evaluation of energy efficiency of High Performance Computing systems used in a scientific supercomputer center. The authors propose a method for the comparison of energy efficiency of computing systems based on the power consumption and execution time of parallel programs. The paper presents a software tool that allows to determine the energy consumption profile of a parallel program automatically without changing its source code. The paper also presents the results of power consumption comparison of NAS Parallel Benchmarks (BT, EP, IS, and LU) tests on computing systems with codenames Intel microprocessors Broadwell, Cascade Lake, Knights Landing and Skylake).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. 1

    G. I. Savin, B. M. Shabanov, P. N. Telegin, and A. V. Baranov, ‘‘Joint supercomputer center of the Russian Academy of Sciences: Present and future,’’ Lobachevskii J. Math. 40 (11), 1853–1862 (2019). https://doi.org/10.1134/S1995080219110271

    Article  MATH  Google Scholar 

  2. 2

    Y. Chen, S. Alspaugh, D. Borthakur, and R. Katz, ‘‘Energy efficiency for large-scale MapReduce workloads with significant interactive analysis,’’ in Proceedings of the 7th ACM European Conference on Computer Systems EuroSys 12 (2012), pp. 43–56. https://doi.org/10.1145/2168836.2168842

  3. 3

    N. Tiwari, S. Sarkar, U. Bellur, and M. Indrawan, ‘‘An empirical study of hadoop’s energy efficiency on a HPC cluster,’’ Proc. Comput. Sci. 29, 62–72 (2014). https://doi.org/10.1016/j.procs.2014.05.006

    Article  Google Scholar 

  4. 4

    E. A. Kiselev, A. V. Baranov, and S. A. Leshchev, ‘‘Comparative analysis of approaches and methods for measuring the power consumption of computer systems,’’ in Proceedings of the ITHPC-2019 5th International Conference Information Technologies and High-Performance Computing, Khabarovsk, Russia (2019), pp. 66–71.

  5. 5

    A. Noureddine, R. Rouvoy, and L. Seinturier, ‘‘A review of energy measurement approaches,’’ Operat. Syst. Rev., Assoc. Comput. Mach. 47 (3), 42–49 (2013). https://doi.org/10.1145/2553070.2553077

    Article  Google Scholar 

  6. 6

    C. Lively, V. Taylor, W. Wu, H. Chang, C. Su, K. Cameron, S. Moore, and D. Terpstra, ‘‘E-AMOM: An energy-aware modeling and optimization methodology for scientific applications on multicore systems,’’ Comp. Sci.–Res. Dev. 29, 197–210 (2014). https://doi.org/10.1007/s00450-013-0239-3

    Article  Google Scholar 

  7. 7

    S. Walker and M. McFadden, ‘‘Best practices for scalable power measurement and control,’’ in Proceedings of the IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Chicago, IL (2016), pp. 1122–1131. https://doi.org/10.1109/IPDPSW.2016.91

  8. 8

    X. Wu and V. Taylor, ‘‘Utilizing hardware performance counters to model and optimize the energy and performance of large scale scientific applications on power-aware supercomputers,’’ in Proceedings of the IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Chicago, IL (2016), pp. 1180–1189. https://doi.org/10.1109/IPDPSW.2016.78

  9. 9

    C. Lively, X. Wu, V. Taylor, S. Moore, H.–C. Chang, and K. Cameron, ‘‘Energy and performance characteristics of different parallel implementations of scientific applications on multicore systems,’’Int. J. High Perform. Comput. Appl. 25, 342–350 (2011). https://doi.org/10.1177/1094342011414749

    Article  Google Scholar 

  10. 10

    D. Li, B. R. de Supinski, M. Schulz, K. Cameron, and D. S. Nikolopoulos, ‘‘Hybrid MPI/OpenMP power-aware computing,’’ in Proceedings of the IEEE International Symposium on Parallel & Distributed Processing (IPDPS), Atlanta, GA (2010), pp. 1–12. https://doi.org/10.1109/IPDPS.2010.5470463

  11. 11

    NVIDIA Management Library (NVML). https://developer.nvidia.com/nvidia-management-library-nvml. Accessed May 18, 2020.

  12. 12

    A. Reuther et al., ‘‘Scalable system scheduling for HPC and big data,’’ J. Parallel Distrib. Comput.111, 76–92 (2018). https://doi.org/10.1016/j.jpdc.2017.06.009

    Article  Google Scholar 

  13. 13

    A. B. Yoo, M. A. Jette, and M. Grondona, ‘‘SLURM: Simple Linux utility for resource management,’’ Lect. Notes Comput. Sci. 2862, 44–60 (2003). https://doi.org/10.1007/10968987_3

    Article  Google Scholar 

  14. 14

    R. L. Henderson, ‘‘Job scheduling under the Portable Batch System,’’ Lect. Notes Comput. Sci. 949, 279–294 (1995). https://doi.org/10.1007/3-540-60153-8_34

    Article  Google Scholar 

  15. 15

    IBM Spectrum LSF Overview. https://www.ibm.com/support/knowledgecenter/en/SSWRJV_10.1.0/ lsf_foundations/chap_lsf_overview_foundations.html. Accessed May 13, 2020.

  16. 16

    Supercomputing Resources of JSCC RAS. http://www.jscc.ru/supercomputing-resources/. Accessed May 12, 2020.

Download references

Funding

The work was carried out at the JSCC RAS as part of the state assignment. Supercomputer MVS-10P OP was used.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to E. A. Kiselev or V. I. Kiselev or B. M. Shabanov or O. S. Aladyshev or A. V. Baranov.

Additional information

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kiselev, E.A., Kiselev, V.I., Shabanov, B.M. et al. The Energy Efficiency Evaluating Method Determining Energy Consumption of the Parallel Program According to Its Profile. Lobachevskii J Math 41, 2542–2551 (2020). https://doi.org/10.1134/S1995080220120161

Download citation

Keywords:

  • supercomputer
  • energy efficiency
  • power consumption profile
  • parallel program
  • high performance computing system
  • HPC
  • NAS Parallel Benchmarks
  • Intel