Skip to main content
Log in

Software Platform for European XFEL: Towards Online Experimental Data Analysis

  • Part 1. Special issue “High Performance Data Intensive Computing” Editors: V. V. Voevodin, A. S. Simonov, and A. V. Lapin
  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

Large amount of data being generated at large scale facilities like European X-ray Free- Electron Laser (XFEL) requires new approaches for data processing and analysis. One of the most computationally challenging experiments at an XFEL is single-particle structure determination. In this paper we propose a new design for an integrated software platform which combines well-established techniques for XFEL data analysis with High Performance Data Analysis (HPDA) methods. In our software platform we use streaming data analysis algorithms with high performance computing solutions. This approach should allow analysis of the experimental dataflow in quasi-online regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Osseyran and M. Giles, Industrial Applications of High-Performance Computing: Best Global Practices (Chapman and Hall/CRC, Boca Raton, 2015).

    Book  Google Scholar 

  2. K. J. Gaffney and H. N. Chapman, “Imaging atomic structure and dynamics with ultrafast X-ray scattering,” Science (Washington, DC, U. S.) 316 (5830), 1444–1448 (2007).

    Article  Google Scholar 

  3. R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, and J. Hajdu, “Potential for biomolecular imaging with femtosecond X-ray pulses,” Nature (London, U. K.) 406 (6797), 752 (2000).

    Article  Google Scholar 

  4. M. Altarelli, R. Brinkmann, M. Chergui, W. Decking, B. Dobson, S. Düsterer, G. Grübel, W. Graeff, H. Graafsma, J. Hajdu, et al., in The European X-Ray Free-Electron Laser, Technical Design Report, No. 97, 1–26 (2006).

    Google Scholar 

  5. A. Aquila, A. Barty, C. Bostedt, S. Boutet, G. Carini, D. DePonte, P. Drell, et al., “The linac coherent light source single particle imaging road map,” Struct. Dyn. 2, 041701 (2015).

    Article  Google Scholar 

  6. H. N. Chapman, A. Barty, M. J. Bogan, S. Boutet, M. Frank, S. P. Hau-Riege, S. Marchesini, B. W. Woods, S. Bajt, W. H. Benner, et al., “Femtosecond diffractive imaging with a soft-X-ray free-electron laser,” Nat. Phys. 2, 839 (2006).

    Article  Google Scholar 

  7. M. M. Seibert, T. Ekeberg, F. Maia, M. Svenda, J. Andreasson, O. Jönsson, D. Odić, B. Iwan, A. Rocker, D. Westphal, et al., “Single mimivirus particles intercepted and imaged with an X-ray laser,” Nature (London, U. K.) 470 (7332), 78 (2011).

    Article  Google Scholar 

  8. M. F. Hantke, D. Hasse, F. R. N. C. Maia, T. Ekeberg, K. John, M. Svenda, N. Duane Loh, A. V. Martin, N. Timneanu, D. S. D. Larsson, et al., “High-throughput imaging of heterogeneous cell organelles with an X-ray laser,” Nat. Photon. 8, 943 (2014).

    Article  Google Scholar 

  9. T. Ekeberg, M. Svenda, C. Abergel, F. Maia, V. Seltzer, J. Claverie, M. Hantke, O. Jönsson, C. Nettelblad, G. Van Der Schot, et al., “Three-dimensional reconstruction of the giant mimivirus particle with an x-ray free-electron laser,” Phys. Rev. Lett. 114, 098102 (2015).

    Article  Google Scholar 

  10. R. P. Kurta, J. J. Donatelli, C. H. Yoon, P. Berntsen, J. Bielecki, B. J. Daurer, H. DeMirci, P. Fromme, M. Hantke, F. Maia, et al., “Correlations in scattered x-ray laser pulses reveal nanoscale structural features of viruses,” Phys. Rev. Lett. 119, 158102 (2017).

    Article  Google Scholar 

  11. A. Barty, R. A. Kirian, F. R. N. C. Maia,M. Hantke, C. H. Yoon, T. A. White, and H. Chapman, “Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data,” J. Appl. Cryst. 37, 1118 (2014).

    Article  Google Scholar 

  12. K. Ayyer, T. Lan, V. Elser, and N. D. Loh, “Dragonfly: an implementation of the expand–maximize–compress algorithm for single-particle imaging,” Int. J. Appl. Cryptogr. 49, 1320–1335 (2016).

    Google Scholar 

  13. F. R. N. C. Maia, T. Ekeberg, D. van der Spoel, and J. Hajdu, “Hawk: the image reconstruction package for coherent x-ray diffractive imaging,” J. Appl. Cryst. 43, 1535 (2010).

    Article  Google Scholar 

  14. B. Henrich, J. Becker, R. Dinapoli, P. Goettlicher, H. Graafsma, H. Hirsemann, R. Klanner, H. Krueger, R. Mazzocco, A. Mozzanica, et al., “The adaptive gain integrating pixel detector AGIPD a detector for the European XFEL,” Nucl. Instrum. Methods Phys. Res., Sect. A 633, S11–S14 (2011).

    Google Scholar 

  15. S. A. Bobkov, “Comparison study of different approaches to classification of diffraction images of biological particles obtained in coherent X-ray diffractive imaging experiments,” Math. Biol. Bioinform. 12, 411–434 (2017).

    Article  Google Scholar 

  16. F. Maia, “The coherent X-ray imaging data bank,” Nat. Methods 9, 854–855 (2012).

    Article  Google Scholar 

  17. B. J. Daurer, K. Okamoto, J. Bielecki, F. Maia, K. Mühlig, M. Seibert, M. Hantke, C. Nettelblad, W. H. Benner, M. Svenda, et al., “Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses,” Int. Union Cryst. J. 4, 854–855 (2017).

    Article  Google Scholar 

  18. J. Andreasson, A. V. Martin, M. Liang, N. Timneanu, A. Aquila, F. Wang, B. Iwan, M. Svenda, T. Ekeberg, M. Hantke, et al., “Automated identification and classification of single particle serial femtosecond X-ray diffraction data,” Opt. Express 22, 2497–2510 (2014).

    Article  Google Scholar 

  19. S. A. Bobkov, A. B. Teslyuk, R. P. Kurta, O. Yu. Gorobtsov, O. M. Yefanov, V. A. Ilyin, R. A. Senin, and I. A. Vartanyants, “Sorting algorithms for single-particle imaging experiments at X-ray free-electron lasers,” J. Synchrotr. Rad. 22, 1345–1352 (2015).

    Article  Google Scholar 

  20. R. P. Kurta, M. Altarelli, and I. A. Vartanyants, “Structural analysis by x-ray intensity angular cross correlations,” Adv. Chem. Phys. 161, 1–39 (2016).

    Google Scholar 

  21. N. D. Loh and V. Elser, “Reconstruction algorithm for single-particle diffraction imaging experiments,” Phys. Rev.. 80, 026705 (2009).

    Google Scholar 

  22. A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” J. R. Stat. Soc., Ser. B, 1–38 (1977).

    Google Scholar 

  23. M. Kevin, Machine Learning: A Probabilistic Perspective (MIT Press, Cambridge,MA, 2012).

    MATH  Google Scholar 

  24. R. M. Neal and G. E. Hinton, “A view of the EM algorithm that justifies incremental, sparse, and other variants,” in Learning in GraphicalModels (MIT Press, Cambridge,MA, 1998).

    Google Scholar 

  25. M. A. Sato and S. Ishii, “On-line EMalgorithm for the normalized Gaussian network,” Neural Comput. 12, 407–432 (2000).

    Article  Google Scholar 

  26. O. Cappeánd E. Moulines, “On-line expectation–maximization algorithmfor latent datamodels,” J. R. Stat. Soc., Ser. B 71, 593–613 (2009).

    Article  MathSciNet  Google Scholar 

  27. G. Celeux, D. Chauveau, and J. Diebolt, “On stochastic versions of the EM algorithm,” Research Report RR-2514 (INRIA, 1995).

    Google Scholar 

  28. S. F. Nielsen et al., “The stochastic EMalgorithm: estimation and asymptotic results,” Bernoulli 6, 457–489 (2000).

    Article  MathSciNet  Google Scholar 

  29. G. Wei and M. A. Tanner, “A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithms,” J. Am. Statist. Assoc. 85 (411), 699–704 (1990).

    Article  Google Scholar 

  30. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758 (1982).

    Article  Google Scholar 

  31. S. Marchesini, “A unified evaluation of iterative projection algorithms for phase retrieval,” Rev. Sci. Instrum. 78, 011301 (2007).

    Article  Google Scholar 

  32. G. Behrmann et al., “A distributed storage system with dCache,” J. Phys.: Conf. Ser. 119, 062014 (2008).

    Google Scholar 

  33. F. Maia et al., “Hawk: the image reconstruction package for coherent X-ray,” J. Appl. Crystallogr. 43, 1535–1539 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Bobkov.

Additional information

(Submitted by A. V. Lapin)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobkov, S.A., Teslyuk, A.B., Zolotarev, S.I. et al. Software Platform for European XFEL: Towards Online Experimental Data Analysis. Lobachevskii J Math 39, 1170–1178 (2018). https://doi.org/10.1134/S1995080218090093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080218090093

Keywords and phrases

Navigation