Lobachevskii Journal of Mathematics

, Volume 37, Issue 1, pp 1–20 | Cite as

3-webs with singularities

  • F. A. Arias Amaya
  • J. R. Arteaga Bejarano
  • M. Malakhaltsev
Article

Abstract

A 3-web with singularities is an ordered collection of three one-dimensional distributions L 1, L 2, L 3 on a 2-dimensional manifold M. The subset Σ ⊂ M where these distributions are not pairwise transversal is called the singularity set. Under some conditions on Σ we find the differential invariants of the 3-web with singularities at the points of Σ and give examples of calculation of these invariants.

Keywords and phrases

3-webs G-structures singularity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. B. Lazareva, A. A. Utkin, and A. M. Shelekhov, J. of Mathematical Sciences 174 (5), 574–608 (2012).CrossRefGoogle Scholar
  2. 2.
    V. V. Goldberg and V. V. Lychagin, J. Geom. Anal. 16 (1), 69–115 (2006).CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    J. S. Wang, J. Geom. Anal. 22 (1), 33–73 (2012).Google Scholar
  4. 4.
    S. I. Agafonov, J. Geom. Anal. 19, 481–508 (2009).CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    S. I. Agafonov, arXiv:1105.1402v3 [MathDG] (2012).Google Scholar
  6. 6.
    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry (Wiley, New York, London, 1963), Vol. 1.MATHGoogle Scholar
  7. 7.
    S. Sternberg, Lectures on Differential Geometry (Prentice-Hall, Englewood Cliffs, 1964).MATHGoogle Scholar
  8. 8.
    R. Montgomery, A tour of Subriemannian Geometries, Their Geodesics and Applications, Mathematical Surveys and Monographs (AMS, Providence, 2002), Vol. 91.Google Scholar
  9. 9.
    J. R. Arteaga and M. A. Malakhaltsev, J. Geom. Phys. 61, 290–308 (2011).CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    T. A. Ivey and J. M. Landsberg, Cartan for the Beginners: Differential Geometry via Moving Frames and Exterior Differential Systems, Graduate Studies in Mathematics (Am. Math. Soc., Providence, RI, 2003), Vol. 61 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • F. A. Arias Amaya
    • 1
    • 2
  • J. R. Arteaga Bejarano
    • 2
  • M. Malakhaltsev
    • 2
  1. 1.Universidad Tecnológica de BolivarCartagena de IndiasColombia
  2. 2.Universidad de los AndesBogotáColombia

Personalised recommendations