Skip to main content
Log in

Iterative methods for solving variational inequalities of the theory of soft shells

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The convergence of iterative methods for solving variational inequalities with monotone-type operators in Banach spaces is studied. Such inequalities arise in the description of deformation processes of soft rotational network shells. Certain properties of these operators, such as coercivity, potentiality, bounded Lipschitz continuity, pseudomonotonicity, and inverse strong monotonicity, are determined. An iterative method for solving these variational inequalities is proposed, its convergence is investigated, and the boundedness of the iterative sequence is proved. Moreover, it is proved that any weakly convergent subsequence of the iterative sequence converges to a solution of the original variational inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.R. Abdyusheva, I. B. Badriev, V. V. Banderov, O. A. Zadvornov, and R. R. Tagirov, “Mathematical modeling of the problem on the equilibrium of a soft biological shell. I. Generalized setting,” Uchen. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauk 154(4), 57–73 (2012).

    Google Scholar 

  2. I. B. Badriev, O. A. Zadvornov, and A. M. Saddek, “Convergence analysis of iterative methods for some variational inequalities with pseudomonotone operators,” Differ. Equations 37(7), 934–942 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  3. J.-L. Lions, Quelques methodes de résolution des problémes aux limites nonlinéaires (Dunod, Paris, 1969; Mir, Moscow, 1972).

    Google Scholar 

  4. H. Gajewski, K. Gröger, and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen (Akademie, Berlin, 1974; Mir, Moscow, 1978).

    MATH  Google Scholar 

  5. P. Tseng, “Further applications of a splitting algorithm to decomposition in variational inequalities and convex programming,” Math. Program. 48(1–3), 249–263 (1990).

    Article  MATH  Google Scholar 

  6. D. Zhu and P. Marcotte, “New classes of generalized monotonicity,” J. Optimiz. Theory Appl. 87(2), 457–471 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  7. E. G. Gol’shtein and N. V. Tret’yakov, Modified Lagrangian functions (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  8. M. M. Vainberg and I. M. Lavrent’ev, “Nonlinear quasi-potential operators,” Dokl. Akad. Nauk 205(5), 1022–1024 (1972).

    MathSciNet  Google Scholar 

  9. I. B. Badriev, O. A. Zadvornov, A. D. Lyashko, “A Study of Variable Step Iterative Methods for Variational Inequalities of the Second Kind,” Differ. Equations 40(7), 971–983 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  10. A. D. Lyashko and M. M. Karchevskii, “Solution of certain nonlinear problems of filtration theory,” Soviet Math. (Izv. VUZ. Mat.), 19(6), 60–66 (1975).

    Google Scholar 

  11. I. B. Badriev and M. M. Karchevskii, “On the convergence of an iterative process in a Banach,” Journal of Mathematical Sciences 71(6), 2727–2735 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  12. R. Glowinski, G.-L. Lions, and R. Trémolières, Analyse numérique des inéquations variationneles (Dunod, Paris, 1976; Mir, Moscow, 1979).

    Google Scholar 

  13. M. Fortin and R. Glowinski, Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems (North-Holland, Amsterdam, 1983).

    MATH  Google Scholar 

  14. D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlinear variational problems via finite element approximation,” Comput. Math. Appl. 2(1), 17–40 (1976).

    Article  MATH  Google Scholar 

  15. P. L. Lions and B. Mercier, “Splitting algorithms for the sum of two nonlinear operators,” SIAM J. Numer. Anal. 16(6), 964–979 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Fortin and R. Glowinski, Méthodes de lagrangien augmenté: applications à la résolution numérique de problèmes aux limites (Dunod, Paris, 1982).

    Google Scholar 

  17. I. Ekeland and R. Temam, Convex Analysis and Variational Problems (North-Holland, Amsterdam, 1976; Mir, Moscow, 1979).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Badriev.

Additional information

Original Russian Text © I.B. Badriev, V.V. Banderov, 2013, published in Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2013, Vol. 155, No. 2, pp. 18–32.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badriev, I.B., Banderov, V.V. Iterative methods for solving variational inequalities of the theory of soft shells. Lobachevskii J Math 35, 371–383 (2014). https://doi.org/10.1134/S1995080214040015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080214040015

Keywords and phrases

Navigation