Lobachevskii Journal of Mathematics

, Volume 35, Issue 3, pp 259–263 | Cite as

Automorphisms of spectral lattices of unbounded positive operators

Article

Abstract

We introduce and study spectral order on unbounded operators. Main result of this note characterizes spectral order automorphism of the lattice of positive (possibly unbounded) self-adjoint operators.

Keywords and phrases

Spectral order of unbounded operators spectral order automorphism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Ando, Linear Algebra and Its Applications 118, 163 (1989).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    W. Arveson, J. of Functional Analysis 15, 217 (1974).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    P. A. Fillmore and W. E. Longstaff, Can. J. Math. XXXVI(5), 820 (1984).MathSciNetCrossRefGoogle Scholar
  4. 4.
    H. F. de Groote, On the canonical lattice structure on the effect algebra of a von Neumann algebra, arXiv: math-ph/0410018v1 6 Oct 2004.Google Scholar
  5. 5.
    J. Hamhalter, Quantum Measure Theory (Kluwer Academic Publishers, Dordrecht, Boston, London, 2003), Book Series: Fundamental Theories of Physics, Vol. 134, p. 418, ISBN 1-4020-1714-6CrossRefMATHGoogle Scholar
  6. 6.
    J. Hamhalter, J. Math. Anal. Appl. 331, 1122 (2007).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    J. Hamhalter, Int. J. Theor. Phys. 47, 245 (2008).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    R. V. Kadison, Proc. Amer. Math. Soc. 2, 505 (1951).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    T. Kato, Linear and Multilinear Algebra 8, 15 (1979).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    L. Molnar and P. Šemrl, Leters in Mathematical Physics 80, 239 (2007).CrossRefMATHGoogle Scholar
  11. 11.
    M. P. Olson, Proc. Amer. Math. Soc. 28(2), 537 (1971).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Department of Mathematical Statistics, Institute of Computational Mathematics and Information TechnologiesKazan Federal UniversityKazanRussia

Personalised recommendations