Lobachevskii Journal of Mathematics

, Volume 35, Issue 1, pp 27–37 | Cite as

Using genetic algorithms to generate D s -optimal response surface designs

  • P. Sirisom
  • S. Chaimongkol
  • J. J. Borkowski


This research introduces a new approach to the generation of D s -optimal designs for subsets of parameters of the second-order response surface model for 2, 3, and 4-dimensional hypercube design spaces while simultaneously satisfying a specified minimum value for the D-efficiency for the full model. Specifically, 1-point and 2-point exchange algorithms and a genetic algorithmwere developed to generate these designs. The results indicate that the D s -criterion values of the GA designs were greater than or equal to those of designs generated by exchange algorithms and by the Optex procedure in SAS. Thus, in general, the GA is superior to the exchange algorithms for generating subset optimal designs.

Keywords and phrases

Exchange algorithm genetic algorithm optimal design response surface design subset optimality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. J. Alvarez, L. Ilzabe, E. Viles, and M. Tanco, Quality Technology and Quantitative Management 6, 295–307 (2009).MathSciNetGoogle Scholar
  2. 2.
    A. C. Atkinson, A. N. Donev, and R. R. Tobias, Optimum Experimental Designs, with SAS (Oxford University Press Inc., New York, 2007).MATHGoogle Scholar
  3. 3.
    J. J. Borkowski, J. of Probability and Statistical Science 1, 65–88 (2003).Google Scholar
  4. 4.
    Z. Galil and J. Kiefer, Technometrics 22, 301–313 (1980).CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, New York, 1989).MATHGoogle Scholar
  6. 6.
    R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms (John Wiley and Sons, New York, 2004).MATHGoogle Scholar
  7. 7.
    A. Heredia-Langner, W. M. Carlyle, D. C. Montgomery, C. M. Borror, and G. C. Runger, J. of Quality Technology 35, 28–46 (2003).Google Scholar
  8. 8.
    W. J. Hill and W. G. Hunter, Technometrics 16, 425–434 (1974).CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    J. H. Holland, Adaptation in Natural and Artificial Systems (The University of Michigan Press, Ann Arbor, MI, 1975).Google Scholar
  10. 10.
    S. Karlin and W. J. Studden, Tchebycheff Systems: With Applications in Analysis and Statistics (John Wiley & Sons, New York, 1966).MATHGoogle Scholar
  11. 11.
    L. P. Khoo and C. H. Chen, Advanced Manufacturing Technology 1, 298–325 (2001).Google Scholar
  12. 12.
    J. Kiefer, J. of the Royal Statistical Society B21, 272–319 (1959).MathSciNetGoogle Scholar
  13. 13.
    J. Kiefer, Canadian J. of Mathematics 12, 363–366 (1960).CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    J. Kiefer, Annals of Math. Stat. 32, 298–325 (1961).CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    J. Kiefer and J. Wolfowitz, Annals of Math. Stat. 30, 271–294 (1959).CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    B. Y. Lim and W. J. Studden, J. Statistical Planning and Inference 16, 15–32 (1987).CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs (Springer-Verlag, New York, 1994).CrossRefMATHGoogle Scholar
  18. 18.
    T. J. Mitchell, Technometrics 16, 203–210 (1974).MATHMathSciNetGoogle Scholar
  19. 19.
    N.-K. Nguyen and A. J. Miller, Computational Statistics and Data Analysis 14, 489–498 (1992).CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms (Springer, New York, 2008).MATHGoogle Scholar
  21. 21.
    R. C. St. John and N. R. Draper, Technometrics 17, 15–23 (1975).CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    W. J. Studden, Annals of Statistics 8, 1132–1141 (1980).CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    D. M. Wardrop and R. H. Myers, J. of Statistical Planning and Inference 25, 7–28 (1980).CrossRefMathSciNetGoogle Scholar
  24. 24.
    H. P. Wynn, J. of the Royal Statistical Society B34, 133–147 (1972).MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Department ofMathematics and Statistics, Faculty of ScienceThammasat UniversityPathum ThaniThailand
  2. 2.Department of Mathematical SciencesMontana State UniversityBozemanUSA

Personalised recommendations