Lobachevskii Journal of Mathematics

, Volume 34, Issue 2, pp 142–147 | Cite as

Starlike cases of the generalized goodman conjecture



We consider functions f that are meromorphic and univalent in the unit disc \(\mathbb{D}\) with a simple pole at the point p ∈ (0, 1) and normalized by f(0) = f′(0) − 1 = 0. A function g is called subordinated under such a function f, if there exists a function ω holomorphic in \(\mathbb{D}\), ω(\(\mathbb{D}\)) ⊂ Open image in new window , such that g(z) = f((z)), z\(\mathbb{D}\), and we use the abbreviation gf to indicate this relationship between two functions. We conjectured that for gf, the inequalities
$$|a_n (g)| \leqslant \frac{1} {{p^{n - 1} }}\sum\limits_{k = 0}^{n - 1} {p^{2k} } ,n \in \mathbb{N}, $$
are valid. Here f is as above and the expansion
$$g(z)\sum\limits_{n = 1}^\infty {a_n (g)z^n } $$
is valid in some neighbourhod of the origin. In the present article, we prove that this is true for two classes of functions f for which Open image in new window \f(\(\mathbb{D}\)) is starlike.

Keywords and phrases

Starlike meromorphic function subordination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. G. Avkhadiev and K.-J. Wirths, Monatsh. Math. 147, 103 (2006).MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    F. G. Avkhadiev and K.-J. Wirths, Complex Var. Elliptic Equ. 52, 299 (2007).MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    F. G. Avkhadiev and K.-J. Wirths, Schwarz-Pick Type Inequalities (Frontiers in Mathematics, Birkhäuser Verlag, Basel, Boston, Berlin, 2009).MATHCrossRefGoogle Scholar
  4. 4.
    B. Bhowmik, S. Ponnusamy, and K.-J. Wirths, Cubo 12, 15 (2010).MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    C. Carathéodory, Theory of functions of a complex variable (Chelsea Publ. Comp., New York, 1960).Google Scholar
  6. 6.
    L. de Branges, Acta Math. 154, 137 (1985).MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    G. M. Goluzin, Mat. Sb. 3(45), 321 (1938) (in Russian)Google Scholar
  8. 8.
    A.W. Goodman, Trans. Amer. Math. Soc. 81, 92 (1956).MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    J. A. Jenkins, Michigan Math. J. 9, 25 (1962).MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    S. S. Miller and P. T. Mocanu, Differential Subordinations, Theory and Applications (Pure and Applied Mathematics, Marcel Dekker, New York, Basel, 2000).MATHGoogle Scholar
  11. 11.
    J. Miller, Proc. Amer. Math. Soc. 31, 446 (1972).MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Ch. Pommerenke, Univalent Functions (Vandenhoeck and Ruprecht, Göttingen, 1975).MATHGoogle Scholar
  13. 13.
    M. S. Robertson, Bull. Amer. Math. Soc. 76, 1 (1970).MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    G. Schober, Univalent Functions — Selected Topics, Lecture Notes in Mathematics 478 (Springer-Verlag, Berlin, Heidelberg, New York, 1975).CrossRefGoogle Scholar
  15. 15.
    K.-J. Wirths, Ann. Polon. Math. 83(1), 87 (2004).MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    C. Yuh Lin, Proc. Amer. Math. Soc. 103, 517 (1988).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Depart. of Mech. and Math.Kazan Federal UniversityKazanRussia
  2. 2.Institut für Analysis and AlgebraTU BraunschweigBraunschweigGermany

Personalised recommendations