Lobachevskii Journal of Mathematics

, Volume 34, Issue 1, pp 1–10 | Cite as

Weighted ergodic theorems for Banach-Kantorovich lattice \(L_p \left( {\hat \nabla ,\hat \mu } \right)\)



In the present paper we prove weighted ergodic theorems and multiparameter weighted ergodic theorems for positive contractions acting on \(L_p \left( {\hat \nabla ,\hat \mu } \right)\). Our main tool is the use of methods of measurable bundles of Banach-Kantorovich lattices.

Keywords and phrases

Banach-Kantorovich lattice positive contraction weighted ergodic theorem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. L. Jones and J. Olsen, Can. J.Math. 46, 343 (1994).MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    K. EL. Berdan, Acta Math. Univ. Comen., New Ser. 68, 1 (1999).MATHGoogle Scholar
  3. 3.
    K. EL. Berdan, Acta Math. Univ. Comen., New Ser. 71, 221 (2002).MATHGoogle Scholar
  4. 4.
    O. Ya. Benderskiy, Dokl. Acad. Nauk UzSSR 9, 3 (1976) (in Russian).Google Scholar
  5. 5.
    V. I. Chilin and I. G. Ganiev, Russian Math. (Iz. VUZ) 44(7), 77 (2000).MathSciNetMATHGoogle Scholar
  6. 6.
    I. G. Ganiev, Uzbek Math. Jour. 5, 14 (1998) (in Russian).MathSciNetGoogle Scholar
  7. 7.
    I. G. Ganiev, Uzb.Math. Jour. 1, 18 (2000).MathSciNetGoogle Scholar
  8. 8.
    I. G. Ganiev, Measurable bundles of lattices nd their applications. In: Studies on Functional Analysis and its Applications (Nauka, Moscow, 2006), p. 9 (in Russian).Google Scholar
  9. 9.
    I. G. Ganiev and F. Mukhamedov, Comment.Math. Univ. Carolinae 47, 427 (2006).MathSciNetMATHGoogle Scholar
  10. 10.
    I. G. Ganiev and V. I. Chilin, Siberian Adv. Math. 12(4), 19 (2002).MathSciNetMATHGoogle Scholar
  11. 11.
    G. Gierz, Bundles of Topological Vector Spaces and their Duality (Springer, Berlin, 1982).MATHGoogle Scholar
  12. 12.
    A. E. Gutman, Siberien Adv.Math. 3(4), 8 (1993).MATHGoogle Scholar
  13. 13.
    A. E. Gutman, Trudy Inst.Mat. 29, 63 (1995) (in Russian).Google Scholar
  14. 14.
    L. V. Kantorovich, B. Z. Vulih, and A. G. Pinsker, Functional analysis in partially ordered spaces (Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1950) (in Russian).MATHGoogle Scholar
  15. 15.
    U. Krengel, Ergodic Theorems (Walter de Grugwer, Berlin, New-York, 1985).MATHCrossRefGoogle Scholar
  16. 16.
    A. G. Kusraev, Vector duality and its applications (Novosibirsk, Nauka, 1985) (in Russian).MATHGoogle Scholar
  17. 17.
    A. G. Kusraev, Dominanted operators. Mathematics and its Applications, V. 519 (Kluwer Academic Publishers, Dordrecht, 2000).Google Scholar
  18. 18.
    A.G. Kusraev and S.S. Kutateladze, Introduction to Boolean Valued Analysis (Moscow, Nauka, 2005) (in Russian).MATHGoogle Scholar
  19. 19.
    Y. Lee, Y. Lin and G. Wahba, J. Amer. Statist. Assoc. 99(465), 67 (2004).MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    C. Ryll-Nardzewski, Topics in ergodic theory. Probab., Proc. 4th Winter Sch. Probab., Karpacz 1975, Lecture Notes Math. 472 (Springer, 1975).Google Scholar
  21. 21.
    W. A. Woyczynski, Geometry andmartingales in Banach spaces. Lect. Notes Math. 472 (Springer, 1975).Google Scholar
  22. 22.
    B. S. Zakirov and V. I. Chilin, Sib.Math. J. 50, 1027 (2009).MathSciNetCrossRefGoogle Scholar
  23. 23.
    J. R. Baxter and J. H. Olsen, Can. J.Math. 35, 145 (1983).MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    M. Lin and M. Weber, Ergod. Th. and Dynam. Sys. 27, 511 (2007).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Department of Science in Engineering Faculty of EngineeringInternational Islamic University of MalaysiaKuala-LumpurMalaysia
  2. 2.Department of Computational and Theoretical Sciences Faculty of ScienceInternational Islamic University of MalaysiaKuantan PahangMalaysia

Personalised recommendations