Lobachevskii Journal of Mathematics

, Volume 33, Issue 3, pp 274–283 | Cite as

Spectra and pseudospectra of convection-diffusion operator

  • Hamza Guebbai
  • Alain Largillier
Article
  • 46 Downloads

Abstract

We study the spectral stability for a nonselfadjoint convection-diffusion operator on an unbounded two dimensional domain starting from a result on the pseudospectrum.

Keywords and phrases

Spectrum pseudospectrum differential operator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. B. Davies, J. Operator Theory, 43, 243 (2000).MathSciNetMATHGoogle Scholar
  2. 2.
    E. B. Davies, Spectral Theory and Differential Operators (Cambridge University Press, 1995).Google Scholar
  3. 3.
    T. Kato, Perturbation Theory of Linear Operators (Springer-Verlag, Berlin, Heidelberg and New York, 1980).MATHGoogle Scholar
  4. 4.
    L. Boulton, “Non-self-adjoint harmonic oscillator, compact semigroups and pseudospectra”, preprint, Kings College London, 1999, Maths.SP/9909179.Google Scholar
  5. 5.
    S. C. Reddy and L. N. Trefethen, SIAMJ. Appl. Math. 54, 1634 (1994).MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    S. Roch and B. Silbermann, J. Operator Theory 35, 241 (1996).MathSciNetMATHGoogle Scholar
  7. 7.
    L. N. Trefethen, Pseudospectra of matrices, p. 234–266 in D. F. Griffiths and G. A. Watson, Numerical Analysis (Longman Sci. Tech. Publ., Harlow, UK, 1992).Google Scholar
  8. 8.
    L. N. Trefethen, SIAM Review 39, 383 (1997).MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    R. A. Adams, Sobolev Spaces (Academic Press, New York, 1975).MATHGoogle Scholar
  10. 10.
    E. Shargorodsky, Bull. London Math. Soc. 41, 524 (2009).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • Hamza Guebbai
    • 1
  • Alain Largillier
    • 2
    • 3
    • 4
  1. 1.Institut Camille Jordan, UMR5208Université de LyonLyonFrance
  2. 2.Université de LyonSaint-EtienneFrance
  3. 3.Université Jean MonnetSaint-EtienneFrance
  4. 4.LAMUSE EA3989St EtienneFrance

Personalised recommendations