Advertisement

Lobachevskii Journal of Mathematics

, Volume 33, Issue 1, pp 10–21 | Cite as

The Lie derivative of currents on Lie groups

  • Kieu Phuong Chi
  • Nguyen Huu Quang
  • Bui Cao Van
Article

Abstract

The aim of this work is to study the properties of the Lie derivative of currents and generalized forms on Riemann manifolds. For an application, we give some results of the Lie derivative of currents and generalized forms on Lie groups.

Keywords and phrases

Lie derivative currents generalized forms compact Lie group 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dinh Tien Cuong and Nessim Sibony, Introduction to the theory of currents (American Mathematical Society-Providence-Rhode Island, 2005, Vol. 84, pp. 31–46).Google Scholar
  2. 2.
    Thomas Hochrainer and Michael Zaiser, Fundamentals of a continuum theory of dislocations (Proceedings of science, SMPRI, 2005, pp. 1–12).Google Scholar
  3. 3.
    Dao Trong Thi and A. T. Fomenko, Minimal surfaces stratified multivarifolds, and the Plateau problem (American Mathematical Society-Providence-Rhode Island, Vol. 84, 1991, pp. 186–205).Google Scholar
  4. 4.
    Katharina Habermann and Andreas Klein, Lie derivative of symplectic spinor fields, metaplectic representation, and quantization (Rostock. Math. Kolloq. Vol. 57, pp. 71–91, 2003).MathSciNetMATHGoogle Scholar
  5. 5.
    S. Kobayashi and K. Nomizu, Foundations of differential geometry (Intersience Publishers, New York-London, Vol. 1, pp. 26–50, 1963).MATHGoogle Scholar
  6. 6.
    Jung-Hwan Kwon and Young Jin Suh, Lie derivatives on Homogeneous real hypersurfaces of type a in complex space forms (Bull. Korean Math. Soc. 34(3), 459–468, 1997).MathSciNetMATHGoogle Scholar
  7. 7.
    R. P. Singh and S. D. Singh, Lie Derivatives and Almost Analytic Vector Fields in a Generalised Structure Manifold (Int. J. Contemp. Math. Sciences, 5(2), 2010, pp. 81–90).Google Scholar
  8. 8.
    B. N. Shapukov, Lie derivatives on fiber manifolds (J. Math. Sci. 108(2), pp. 211–231, 2002).MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    A. Ya. Sultanov, Derivations of linear algebras and linear connections (J. Math. Sci. 169(3), 2010, pp. 376–391).MathSciNetCrossRefGoogle Scholar
  10. 10.
    K. Yano, The theory of Lie derivatives and its applications (North-Holland Publishing Co., Amsterdam; P. Noordhoff Ltd., Groningen; Interscience Publishers Inc., New York, 1957, pp. 18–45).MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • Kieu Phuong Chi
    • 1
  • Nguyen Huu Quang
    • 1
  • Bui Cao Van
    • 1
  1. 1.Department of MathematicsVinh UniversityVinh CityVietnam

Personalised recommendations