Lobachevskii Journal of Mathematics

, Volume 32, Issue 4, pp 385–394 | Cite as

On a class of separable quadratic stochastic operators

  • U. A. Rozikov
  • A. Zada


The purpose of this paper is to investigate a class of separable quadratic stochastic operators. Each separable quadratic stochastic operator (SQSO) depends on two quadratic matrices A and B, which have some relations. In this paper we proved that for each skew symmetric matrix A the corresponding SQSO is a linear operator. We also proved that non linear Volterra QSOs are not SQSOs. For a fixed matrix A we also discussed some properties of the set of all the corresponding matrices B of SQSOs.

Keywords and phrases

Skew symmetric matrices Quadratic stochastic operators Volterra operators 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. N. Bernstein, The solution of a mathematical problem related to the theory of heredity, Uchen. Zapiski Nauchno-Issled. Kafedry Ukr. Otd. Matem. 1, 83 (1924).Google Scholar
  2. 2.
    R. L. Devaney, An introduction to chaotic dynamical system (Westviev Press, 2003).Google Scholar
  3. 3.
    S. N. Elaydi, Discrete chaos (Chapman Hall/CRC, 2000).Google Scholar
  4. 4.
    N. N. Ganikhodjaev and U. A. Rozikov, On quadratic stochastic operators generated by Gibbs distributions, Regul. Chaotic Dyn. 11(4), 467 (2006).MathSciNetCrossRefGoogle Scholar
  5. 5.
    N. N. Ganikhodjaev, On the application of the theory of Gibbs distributions in mathematical genetics, Russian Acad. Sci. Dokl. Math. 61(3), 321 (2000).Google Scholar
  6. 6.
    R. N. Ganikhodzhaev, Quadratic stochastic operators, Lyapunov functions, and tournametns, Russian Acad. Sci. Sb.Math. 76(2), 489 (1993).MathSciNetCrossRefGoogle Scholar
  7. 7.
    R. N. Ganikhodzhaev, On the definition of quadratic bistochastic operators, Russian Math. Surveys 48(4), 244 (1993).MathSciNetCrossRefGoogle Scholar
  8. 8.
    R. N. Ganikhodzhaev and D. B. Eshmamatova, Quadratic automorphisms of a simplex and the asymptotic behaviour of their trajectories, Vladikavkaz. Math. Zh. 8(2), 12 (2006).MathSciNetGoogle Scholar
  9. 9.
    R. N. Ganikhodzhaev, Map of fixed points and Lyapunov functions for a class of discrete dynamical systems, Math. Notes. 56(5), 1125 (1994).MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    R. N. Ganikhodzhaev and U.A. Rozikov, Quadratic stochastic operators: results and open problems arXiv:0902.4207v2 [math.DS].Google Scholar
  11. 11.
    J. Hofbaver, K. Sigmund, The theory of evolution and dynamical systems (Cambridge Univ. Press, 1988).Google Scholar
  12. 12.
    R. D. Jenks, Quadratic differential systems for interactive population models, J.Diff. Equations 5, 497 (1969).MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    H. Kesten, Quadratic transformations: A model for population growth I, II, Adv. Appl. Prob. 2,1, 179 (1970).MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Yu. I. Lyubich, Mathematical structures in population genetics, in Biomathematics (Springer-Verlag, 1992), vol. 22.Google Scholar
  15. 15.
    R. C. Robinson, An introduction to Dynamical systems: Continues and Discrete (Pearson Education, 2004).Google Scholar
  16. 16.
    U. A. Rozikov and S. Nazir, Separable Quadratic Stochastic Operators, Lobschevskii J. Math. 3, 215 (2010).MathSciNetCrossRefGoogle Scholar
  17. 17.
    U. A. Rozikov and U. U. Zhamilov, On F-quadratic stochastic operators, Math. Notes. 83(4), 554 (2008).MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    U. A. Rozikov and A. Zada, On l-Volterra quadratic stochastic operators, Doklady Math. 79(1), 32 (2009).MathSciNetCrossRefGoogle Scholar
  19. 19.
    U. A. Rozikov and N. B. Shamsiddinov, On non-Volterra quadratic stochastic operators generated by a product measure, Stoch, Anal. Appl. 27(2), 353 (2009).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Institute of Mathematics and Information TechnologiesTashkentUzbekistan
  2. 2.Abdus Salam School of Mathematical Sciences (ASSMS)GCULahorePakistan
  3. 3.Department of MathematicsUniversity of PeshawarPeshawarPakistan

Personalised recommendations