Some properties of solutions for an evolution p(x)-Laplacian equation

  • Honglei Lang
  • Changchun Liu
  • Zhenbang Li


We consider an initial-boundary value problem for an evolution p(x)-Laplacian equation. The problems describe the motion of generalized Newtonian fluids which were studied by some other authors. Under some assumptions on the initial value, we establish the existence of weak solutions by the time-discrete method. The uniqueness and the asymptotic behavior of solutions are also discussed.

Keywords and phrases

p(x)-Laplace existence uniqueness asymptotic behavior 


  1. 1.
    E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal. 164, 213 (2002).CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    E. Acerbi, G. Mingione, and G. A. Seregin, Regularity results for parabolic systems related to a class of Non Newtonian fluids, Annales de l’Institut Henri Poincare — Analyse Non Lineaire 21, 25 (2004).MATHMathSciNetGoogle Scholar
  3. 3.
    S. Antontsev and V. Zhikov, Higher integrability for parabolic equations of p(x, t)-Laplacian type, Adv. Differential Equations 10(9), 1053 (2005).MATHMathSciNetGoogle Scholar
  4. 4.
    S. Antontsev and S. Shmarev, Parabolic equations with anisotropic nonstandard growth conditions, Free boundary problems, Internat. Ser. Numer. Math., Birkhäuser, Basel 154, 33 (2007).CrossRefGoogle Scholar
  5. 5.
    Kungching Chang, Critical point theory and its applications (Shanghai Sci. Tech. Press, Shanghai, 1986).MATHGoogle Scholar
  6. 6.
    E. Dibenedetto, Degenerate Parabolic Equations (Springer-Verlag, New York, 1993).MATHGoogle Scholar
  7. 7.
    L. Diening and M. Ružička, Strong solutions for generalized Newtonian fluids, J. Math. Fluid Mech. 7(3), 413 (2005).CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    X. L. Fan, Global C 1,α regularity for variable exponent elliptic equations in divergence form, J. Differential Equations 235(2), 397 (2007).CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    X. L. Fan and D. Zhao, On the spaces L p(x)(Ω) and W m,p(x)(Ω), J. Math. Anal. Appl. 263(2), 424 (2001).CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    X. L. Fan and Q. H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52(8), 1843 (2003).CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    X. Fan, J. Shen, and D. Zhao, Sobolev embedding theorems for spaces W k,p(x)(Ω), J. Math. Anal. Appl. 262, 749 (2001)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    O. Kováčik and J. Rákosník, On spaces L p(x) and W k,p(x), Czechoslovak Math. J. 41(116)(4), 592 (1991).MathSciNetGoogle Scholar
  13. 13.
    J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, (Springer, Berlin, 1983), p. 1034.Google Scholar
  14. 14.
    M. Ružička, Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics (Springer, Berlin, 2000), vol. 1748.Google Scholar
  15. 15.
    A. F. Tedeev, The interface blow-up phenomenon and local estimates for doubly degenerate parabolic equations, Appl. Anal. 86(6), 755 (2007).CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    J. Zhao, Existence and nonexistence of solutions for u t = div(|∇u|p−2u) + f(∇u, u, x, t), J. Math. Anal. Appl. 172(1), 130 (1993).CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Department of MathematicsJilin UniversityChangchunChina

Personalised recommendations