Skip to main content
Log in

Some properties of solutions for an evolution p(x)-Laplacian equation

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider an initial-boundary value problem for an evolution p(x)-Laplacian equation. The problems describe the motion of generalized Newtonian fluids which were studied by some other authors. Under some assumptions on the initial value, we establish the existence of weak solutions by the time-discrete method. The uniqueness and the asymptotic behavior of solutions are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal. 164, 213 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  2. E. Acerbi, G. Mingione, and G. A. Seregin, Regularity results for parabolic systems related to a class of Non Newtonian fluids, Annales de l’Institut Henri Poincare — Analyse Non Lineaire 21, 25 (2004).

    MATH  MathSciNet  Google Scholar 

  3. S. Antontsev and V. Zhikov, Higher integrability for parabolic equations of p(x, t)-Laplacian type, Adv. Differential Equations 10(9), 1053 (2005).

    MATH  MathSciNet  Google Scholar 

  4. S. Antontsev and S. Shmarev, Parabolic equations with anisotropic nonstandard growth conditions, Free boundary problems, Internat. Ser. Numer. Math., Birkhäuser, Basel 154, 33 (2007).

    Chapter  Google Scholar 

  5. Kungching Chang, Critical point theory and its applications (Shanghai Sci. Tech. Press, Shanghai, 1986).

    MATH  Google Scholar 

  6. E. Dibenedetto, Degenerate Parabolic Equations (Springer-Verlag, New York, 1993).

    MATH  Google Scholar 

  7. L. Diening and M. Ružička, Strong solutions for generalized Newtonian fluids, J. Math. Fluid Mech. 7(3), 413 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  8. X. L. Fan, Global C 1,α regularity for variable exponent elliptic equations in divergence form, J. Differential Equations 235(2), 397 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  9. X. L. Fan and D. Zhao, On the spaces L p(x)(Ω) and W m,p(x)(Ω), J. Math. Anal. Appl. 263(2), 424 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  10. X. L. Fan and Q. H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52(8), 1843 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  11. X. Fan, J. Shen, and D. Zhao, Sobolev embedding theorems for spaces W k,p(x)(Ω), J. Math. Anal. Appl. 262, 749 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. O. Kováčik and J. Rákosník, On spaces L p(x) and W k,p(x), Czechoslovak Math. J. 41(116)(4), 592 (1991).

    MathSciNet  Google Scholar 

  13. J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, (Springer, Berlin, 1983), p. 1034.

    Google Scholar 

  14. M. Ružička, Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics (Springer, Berlin, 2000), vol. 1748.

    Google Scholar 

  15. A. F. Tedeev, The interface blow-up phenomenon and local estimates for doubly degenerate parabolic equations, Appl. Anal. 86(6), 755 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  16. J. Zhao, Existence and nonexistence of solutions for u t = div(|∇u|p−2u) + f(∇u, u, x, t), J. Math. Anal. Appl. 172(1), 130 (1993).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changchun Liu.

Additional information

Submitted by A. Lapin

This work is supported by the National Science Foundation of China (No. J0730101).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, H., Liu, C. & Li, Z. Some properties of solutions for an evolution p(x)-Laplacian equation. Lobachevskii J Math 32, 48–60 (2011). https://doi.org/10.1134/S1995080211010082

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080211010082

Keywords and phrases

Navigation