Advertisement

Lobachevskii Journal of Mathematics

, Volume 31, Issue 3, pp 295–306 | Cite as

The determinants of matrices constructed by subdiagonal, main diagonal and superdiagonal

Article
  • 68 Downloads

Abstract

The purpose of this article is to prove several evaluations of determinants of matrices, the entries of which are given by the recurrences
$$ a_{i,j} = \left\{ {\begin{array}{*{20}c} {a_{i,j - 2} + a_{i + 1,j - 1} + a_{i + 2,j,} if j \geqslant i + 2;} \\ {a_{i - 2,j} + a_{i - 1,j + 1} + a_{i,j + 2,} if i \geqslant j + 2;} \\ \end{array} } \right. $$
with various choices for main diagonal a i,i , superdiagonal a i,i+1 and subdiagonal a i+1,i.

Key words and phrases

Determinant LU-decomposition Recurrence relation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Bacher, Determinants of matrices related to the Pascal triangle, J. Théor. Nombres Bordeaux 14, 19 (2002).MATHMathSciNetGoogle Scholar
  2. 2.
    C. Krattenthaler, Advanced determinant calculus, Sém. Lothar. Combin. 42, Art. B42q, 67 (1999).MathSciNetGoogle Scholar
  3. 3.
    C. Krattenthaler, Advanced determinant calculus: a complement, Linear Algebra and its Application 411, 68 (2005).MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    A. R. Moghaddamfar, S. M. H. Pooya, S. Navid Salehy, and S. Nima Salehy, More calculations on determinant evaluations, Electronic Journal of Linear Algebra 16, 19 (2007).MATHMathSciNetGoogle Scholar
  5. 5.
    A. R. Moghaddamfar, S. Navid Salehy, and S. Nima Salehy, The determinants of matrices with recursive entries, Linear Algebra and its Applications 428(11–12), 2468 (2008).MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    A. R. Moghaddamfar, M. H. Pooya, S. Navid Salehy, and S. Nima Salehy, A symbolic evaluation of determinants of matrices with recursive entries, Lobachevskii Journal of Mathematics 30(1), 46 (2009).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    A. R. Moghaddamfar, S. Navid Salehy, and S. Nima Salehy, Evaluating some determinants of matrices with recursive entries, Bulletin of the KoreanMathematical Society 46(2), 331 (2009).MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    A. R. Moghaddamfar and M. H. Pooya, Generalized Pascal triangles and Toeplitz matrices, Electronic Journal of Linear Algebra 18, 564 (2009).MATHMathSciNetGoogle Scholar
  9. 9.
    A. R. Moghaddamfar, S. M. H. Pooya, S. Navid Salehy, and S. Nima Salehy, Fibonacci and Lucas sequences as the principal minors of some infinite matrices, Journal of Algebra and Its Applications 8 (6), 869 (2009).MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    A. R. Moghaddamfar, Determinants of several matrices associated with Pascal’s triangle, Asian-European Journal of Mathematics 3(1), 119 (2010).MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    A. R. Moghaddamfar, M. H. Pooya, S. Navid Salehy, and S. Nima Salehy, On the matrices related to marithmetic triangle, Linear Algebra and its Applications 432(1), 53 (2010).MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • N. Mirashe
    • 1
  • A. R. Moghaddamfar
    • 2
    • 3
  • S. H. Mozafari
    • 1
  1. 1.Department of Computer Hardware Engineering, Faculty of Electrical EngineeringK. N. Toosi University of TechnologyTehranIran
  2. 2.Department of Mathematics, Faculty of ScienceK. N. Toosi University of TechnologyTehranIran
  3. 3.Research Institute for Fundamental Sciences (RIFS)TabrizIran

Personalised recommendations