On bundles of covelocities

  • Jiří M. Tomáš


For a Weil algebra A = \( \mathbb{D}\) r k /I = ℝ ⊕ N A and a manifold M satisfying dimM = mk, the coincidence of the space T A *M of A-covelocities T x A f: T x A MT 0 A ℝ with the bundle of the r-th order covelocities T r *M is proved. For a Lie subgroup G A G m r of I-preserving \( \mathbb{D}\) m r -automorphisms and a Lie group homomorphism p: G m r G A it is proved that the space T V,p A *M of T x A f restricted to individual regular p(G m r )-orbits on T m r M together with the extensions to other regular p(G m r )-orbits coincides with the natural bundle P r M[N A , ℓ] with the standard fiber N A and the left action ℓ: G m r × N A N A induced by p.

Key words and phrases

Lie group r-jet bundle functor Weil functor 

2000 Mathematics Subject Classification

58A20 58A32 58D15 


  1. 1.
    J. R. Alonso, Jet manifolds associated to a Weil bundle, Arch. Math. Brno 36, 195 (2000).MATHMathSciNetGoogle Scholar
  2. 2.
    R. J. Alonso-Blanco and D. Blázquez-Sanz, The only global contact transformations of order two or more are point transformations, Journal of Lie Theory 15, 135 (2005).MATHMathSciNetGoogle Scholar
  3. 3.
    G. N. Bushueva, Weil functors and product preserving functors on the category of parameter-dependent manifolds, Russian Mathematics (Izvestia VUZ. Matematika) 5, 14 (2005).MathSciNetGoogle Scholar
  4. 4.
    G. N. Bushueva and V. V. Shurygin, On the higher-order geometry of Weil bundles over smooth manifolds and over parameter dependent manifolds, Lobachevskij J. Math. 18, 53 (2005).MATHMathSciNetGoogle Scholar
  5. 5.
    D. J. Eck, Product-preserving functors on smooth manifolds, J. PureAppl. Algebra 6(42), 133 (1986).CrossRefMathSciNetGoogle Scholar
  6. 6.
    C. Ehresmann, Extension du calcules jets aux jets non-holonomes, C.R.A.S. 239, 1763 (1954).MathSciNetGoogle Scholar
  7. 7.
    G. Kainz and P. W. Michor, Natural transformations in Differential Geometry, CzechoslovakMath. J. 37, 584 (1987).MathSciNetGoogle Scholar
  8. 8.
    I. Kolář, Covariant Approach to natural transformations of Weil bundles, Comment. Math. Univ. Carolinae 99 (1986).Google Scholar
  9. 9.
    I. Kolář and W. M. Mikulski, On the fiber product preserving bundle functors, Diff. Geometry and Appl. 11, 105 (1999).MATHCrossRefGoogle Scholar
  10. 10.
    I. Kolář, P. W. Michor, and J. Slovák, Natural Operations in Differential Geometry (Springer-Verlag, 1993).Google Scholar
  11. 11.
    O. O. Luciano, Categories of multiplicative functors and Weil’s infinitely near points, Nagoya Math. J. 109, 69 (1988).MATHMathSciNetGoogle Scholar
  12. 12.
    W. M. Mikulski, Product Preserving Bundle Functors on FiberedManifolds, Arch.Math. 32, 307 (1996).MATHMathSciNetGoogle Scholar
  13. 13.
    A. Morimoto, Prolongation of geometric structures, Math. Inst. Nagoya Univ. (ChikusaKu, Nagoya, 1969).Google Scholar
  14. 14.
    F. J. Muriel, J. Muñoz, and J. Rodriguez, Weil bundles and jet spaces 50(4), 721 (2000).MATHGoogle Scholar
  15. 15.
    V. V. Shurygin, Jr., Radiance obstructions for smoothmanifolds overWeil algebras, Russian Mathematics (Izvestia VUZ. Matematika) 49(5), 67 (2005).MATHMathSciNetGoogle Scholar
  16. 16.
    V. V. Shurygin, Manifolds over algebras and their application to the geometry of jet bundles, Russian Math. Surveys 48, 75 (1993).CrossRefMathSciNetGoogle Scholar
  17. 17.
    A. Weil, Théorie des points proches sur les varits diffrentiables, Colloque de Gometrie Diff., C.N.R.S. 111 (1953).Google Scholar
  18. 18.
    J. Tomáš, Natural T-functions on the cotangent bundle to a Weil bundle, Czechoslovak Math. J. 54(129), 868 (2004).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • Jiří M. Tomáš

There are no affiliations available

Personalised recommendations