Lobachevskii Journal of Mathematics

, Volume 30, Issue 1, pp 81–88 | Cite as

Imaginary Killing spinors on (2, n − 2)-manifolds



In this paper we prove that a (2, n − 2)-manifold admitting an imaginary Killing spinor with nontrivial Dirac current, is at least locally a codimension one warped product with a special warping function. Hence, a (2, 2)-manifold admitting such an imaginary Killing spinor is Einstein iff it is conformally flat.

Key words and phrases

Killing Spinors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ch. Bar, Real Killing spinors and holonomy. Comm. Math. Phys. 154, 509 (1993).CrossRefMathSciNetGoogle Scholar
  2. 2.
    H. Baum, Complete Riemannian manifolds with imaginary Killing spinors. Ann. Glob. Anal. Geom. 7, 2 (1989).Google Scholar
  3. 3.
    A. L. Besse, Einstein Manifolds, Volume of Ergebnisse der Mathematik und ihrer Grenzgebiete (Springer, 1987).Google Scholar
  4. 4.
    H. Baum, Th. Friedrich, R. Grunewald, and I. Kath, Twistors and Killing spinors on Riemannian manifolds, Volume 124 of Teubner-Texte ZurMathematik (Teubner-Verlag, stuttgart/Leipzig, 1991).Google Scholar
  5. 5.
    Ch. Bohle, Killing and Twistor Spinors on Lorentzian Manifolds (Diplomarbeit, Freie Universität Berlin, 1998).Google Scholar
  6. 6.
    Ch. Bohle, Killing spinors on Lorentzian manifolds. Journ. Geom. Phys., 2000.Google Scholar
  7. 7.
    R. L. Bryant, Pseudo-Riemannian metrics with parallel spinor fields and vanishing Ricci tensor, in: Global Analysis and HarmonicAnalysis, eds. J. P. Bourguignon, T. Branson, O. Hijazi. seminaries et congres, French Math. Soc. 4, 53 (2000).Google Scholar
  8. 8.
    I. Kath, Killing Spinors on Pseudo-Riemannian Manifolds. Habilitationsschrift Humboldt-Universität (Berlin, 1999).Google Scholar
  9. 9.
    W. Kühnel and H.-B. Rademacher, Essential conformal fields in pseudo-Riemannian geometry. J. Math. Pures Appl. 74, 453 (1995).MATHMathSciNetGoogle Scholar
  10. 10.
    W. Kühnel and H.-B. Rademacher, Essential conformal fields in pseudo-Riemannian geometry II. J. Math. Sci. Univ. Tokyo 4, 649 (1997).MATHMathSciNetGoogle Scholar
  11. 11.
    F. Leitner, Imaginary Killing spinors in Lorentzian geometry. J. Math. Phys. 44, 4795 (2003).MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    B. O’Neill, Semi-Riemannian Geometry (Academic Press, 1983).Google Scholar
  13. 13.
    Twistor algebra. J. Math. Phys. 8, 345 (1967).Google Scholar
  14. 14.
    J. A. Wolf, Spaces of Constant Curvature (Berkeley, Calif., 1972).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of SciencesVali-E-Asr University of RafsanjanRafsanjanIran

Personalised recommendations