Skip to main content
Log in

Coefficient inequalities for a new class of univalent functions

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

In the present article, a new class Σ α , 0 ⩽ α < 1, of analytic and univalent functions f: U\( \bar C \), where U is an open unit disk, satisfying the standard normalization f(0) = f′(0) − 1 = 0 is considered. Assume that f ∈ Σ α takes the form

$$ f(z) = z + \sum\limits_{n = 2}^\infty {A_{n,\alpha } (f)z^{n + \alpha } } , 0 \leqslant \alpha < 1, $$

such that A 0,0 = 0 and A 1,0 = 1. Also, we define the family Co(p), where p ∈ (0, 1), of functions f: U\( \bar C \) that satisfy the following conditions:

  1. (i)

    f ∈ Σ α is meromorphic in U and has a simple pole at the point p.

  2. (ii)

    f(0) = f′(0) − 1 = 0.

  3. (iii)

    f maps U conformally onto a set whose complement with respect to \( \bar C \) is convex.

We call such functions concave univalent functions. We prove some coefficient estimates for functions in this class when f has the expansion

$$ f(z) = \sum\limits_{n = 0}^\infty {a_{n,\alpha } (z - p)^{n + \alpha } } , \left| {z - p} \right| < 1 - p, p \in (0,1), 0 \leqslant \alpha < 1. $$

The second part of the article concerns some properties of a generalized Sălăgean operator for functions in Σ α . Moreover, a result on subordination for the functions f ∈ Σ α is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. E. Livingston, Convex meromorphic mappings, Ann. Polon. Math. 59, 275 (1994).

    MATH  MathSciNet  Google Scholar 

  2. A. Ibrahim, S. Owa, M. Darus, and Y. Nakamura, Banach, J. Math. Anal. 2, 16 (2008).

    MATH  MathSciNet  Google Scholar 

  3. B. Bhowmik and C. Pommerenke, Coefficient inequalities for concave and meromorphically starlike univalent functions. Ann. Polon. Math. 93(2), 177 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  4. F. G. Avkhadiev and K. J. Wirths, Convex holes produce lower bounds for coefficients, Complex Variables 47, 553 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  5. F. G. Avkhadiev, C. Pommerenke, and K. J. Wirths, On the sufficient of concave univalent functions, Math. Nachr. 271, 3 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  6. F. G. Avkhadiev and K. J. Wirths, On a conjecture of Livingston,Mathematica(Cluj) 46(69), 19 (2004).

    MathSciNet  Google Scholar 

  7. F. G. Avkhadiev and K. J. Wirths, A proof of Livingston conjecture, Forum Math. 19, 149 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  8. K. J. Wirths, On the residuum of concave univalent functions, Serdica Math. J. 32, 209 (2006).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Darus.

Additional information

(Submitted by F.G. Avkhadiev)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darus, M., Ibrahim, R.W. Coefficient inequalities for a new class of univalent functions. Lobachevskii J Math 29, 221–229 (2008). https://doi.org/10.1134/S1995080208040045

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080208040045

2000 Mathematics Subject Classification

Key words and phrases

Navigation