Advertisement

Lobachevskii Journal of Mathematics

, Volume 29, Issue 2, pp 60–67 | Cite as

Innerness of derivations on subalgebras of measurable operators

  • Sh. A. Ayupov
  • K. K. Kudaybergenov
Article

Abstract

Given a von Neumann algebra M with a faithful normal semifinite trace τ, let L(M, τ) be the algebra of all τ-measurable operators affiliated with M. We prove that if A is a locally convex reflexive complete metrizable solid *-subalgebra in L(M, τ), that can be embedded into a locally bounded weak Fréchet M-bimodule, then any derivation on A is inner.

Key words and phrases

von Neumann algebras measurable operator weak Fréchet bimodule derivation inner derivation 

2000 Mathematics Subject Classification

46L57 46L50 46L55 46L60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Z. Abdullaev, The Dual Space for Arens Algebra, Uzbek Math. J. 2, 3 (1997).Google Scholar
  2. 2.
    S. Albeverio, Sh. A. Ayupov, and K. K. Kudaybergenov, Non Commutative Arens Algebras and Their Derivations, J. Funct. Anal. 253(1), 287 (2007).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    S. Albeverio, Sh. A. Ayupov, and K. K. Kudaybergenov, Derivations on the Algebra of Measurable Operators Affiliated with a Type I von Neumann Algebra, SFB 611, Universität Bonn, Preprint, No. 301 (2006); arxivmath.OA/070317lvlGoogle Scholar
  4. 4.
    S. Albeverio, Sh. A. Ayupov, and K. K. Kudaybergenov, Descriptions of Derivations on Measurable Operator Algebras of Type I, SFB 611, Universität Bonn, Preprint, No. 361 (2007); arXivmath.OA/0710.3344vlGoogle Scholar
  5. 5.
    Sh. A. Ayupov, Derivations in Measurable Operator Algebras, DAN RUz 3, 14 (2000).Google Scholar
  6. 6.
    Sh. A. Ayupov, Derivations on Unbounded Operators Algebras, Abstracts of the International Conference “Operators Algebras and Quantum Probability” (Tashkent, 2005), p. 38–42.Google Scholar
  7. 7.
    A. F. Ber, V. I. Chilin, and F. A. Sukochev, Non-trivial Derivation on Commutative Regular Algebras. Extracta Math. 21(2), 107 (2006).MATHMathSciNetGoogle Scholar
  8. 8.
    H. G. Dales, Banach Algebras and Automatic Continuity (Clarendon Press, Oxford, 2000).MATHGoogle Scholar
  9. 9.
    A. Inoue, On a Class of Unbounded Operators II, Pacific J. Math. 66, 411 (1976).MATHMathSciNetGoogle Scholar
  10. 10.
    A. G. Kusraev, Automorphisms and Derivations on a Universally Complete Complex f-Algebra, Sib. Math. J. 47, 77 (2006).CrossRefMathSciNetGoogle Scholar
  11. 11.
    I. Namioka, E. Asplund, A Geometric Proof of Ryll-Nardzewski Fixed Point Theorem, Bull. Am. Math. Soc. 67, 443 (1967).CrossRefMathSciNetGoogle Scholar
  12. 12.
    E. Nelson, Notes on Non-commutative Integration, J. Funct. Anal. 15, 91 (1975).Google Scholar
  13. 13.
    S. Sakai, C*-algebras and W*-algebras (Springer-Verlag, 1971).Google Scholar
  14. 14.
    S. Sakai, Operator Algebras in Dynamical Systems (Cambridge University Press, 1991).Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  1. 1.Institute of Mathematics and Information TechnologiesUzbekistan Academy of SciencesTashkentUzbekistan

Personalised recommendations