Influence of Bentonite Nanoclay on the State of the Rat Intestine Protective Barrier in the Experiment

Abstract

Bentonite nanoclays are widely used in the food industry as technological aids, that is, adsorbents in the purification of vegetable oils and in the production of beverages. Permitted food additives include sodium, potassium and calcium aluminosilicates (E554–E556), bentonite (E558), and kaolin (E559). The data on the oral toxicity of nanoclays (NCs) are few and contradictory. It is known that in vitro native and organomodified NCs exhibit cytotoxicity against both normal and transformed animal and human cells. Due to high ion-exchange and adsorption capacity, NCs can interfere with the absorption of trace elements in the gastrointestinal tract, in particular zinc. Nanoclays can affect the composition and activity of intestinal microbiocenosis. In an experiment on the subacute 92-day oral toxicity of bentonite NCs for Wistar rats it was shown that NCs at a dose of 100 mg/kg bw (body weight) prevent the permeation of chicken ovalbumin macromolecules through the intestinal barrier, which were not detected in the blood of all tested rats 3 h after its intragastric administration at a dose of 2000 mg/kg bw. In the same animals, a significant increase in absolute body weight was noted. The results of microscopic examination of the mucous membrane of the small intestine showed an increase in the secretion of the intestinal mucus with the formation of a dense mucous barrier at an NC dose of 10 mg/kg bw or more. The formation of this barrier already occurred with the localization over the brush border of enterocytes with an increase in the number of goblet cells at a dose of 10 mg/kg bw. At a dose of 100 mg/kg bw, together with a sharp increase in the number of these cells, a merged layer of the dense mucus was formed, sticking together the villi in the apical part. At the lowest of the studied NC doses (1 mg/kg bw), an increase in the desquamation of enterocytes in the apical part of the villi was observed. Morphometric analysis of the villus length and crypt depth showed that the villus/crypt ratio decreased under NC consumption within 32–34% compared with the control regardless of the dose of the nanomaterial. NC consumption in the entire range of the studied doses had a negative effect on the morphofunctional state of the villi and crypts of the rat ileum, while excessive mucus secretion at an NC dose of 100 mg/kg bw can disrupt parietal digestion and affect the barrier and immunoregulatory functions of the intestine.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. 1.

    Technical Regulations of the Customs Union 029/2012 “Safety requirements of food additives, flavorings and processing aids”, Annex 2.

  2. 2.

    The order of the Ministry of Health of the Russian Federation no. 199n dated April 1, 2016 “On the approval of the rules of good laboratory practice”; Guide for the care and use of laboratory animals. Eighth Edition / National Research Council of the national academies. Washington: The National Academies Press. 2011.

  3. 3.

    Johns Hopkins University Animal Care and Use Committee, 2020. http://web.jhu.edu/animalcare/procedures/rat.html#no-rmative.

REFERENCES

  1. 1

    N. Bumbudsanpharoke and S. Ko, J. Nanomater. 2019, 8927167 (2019). https://doi.org/10.1155/2019/8927167

    CAS  Article  Google Scholar 

  2. 2

    A. Awasthi, P. Jadhao, and K. Kumari, SN Appl. Sci. 1, 1076 (2019). https://doi.org/10.1007/s42452-019-0858-9

    CAS  Article  Google Scholar 

  3. 3

    T. D. Phillips, Toxicol. Sci. 52 (Suppl. 2), 118 (1999). https://doi.org/10.1093/toxsci/52.suppl_1.118

    CAS  Article  Google Scholar 

  4. 4

    V. Kumar and K. D. Gill, Arch. Toxicol. 83, 965 (2009). https://doi.org/10.1007/s00204-009-0455-6

    CAS  Article  Google Scholar 

  5. 5

    C. Exley, Morphologie 100 (329), 51 (2016). https://doi.org/10.1016/j.morpho.2015.12.003

    CAS  Article  Google Scholar 

  6. 6

    F. Reichardt, B. Chaume, and C. Haboldet, et al., Comp. Biochem. Physiol. Mol. Integr. A: Physiol. 146, S186 (2007). https://doi.org/10.1016/j.cbpa.2008.04.065

    Article  Google Scholar 

  7. 7

    O. V. Bagryantseva, G. N. Shatrov, S. A. Khotimchenko, et al., Anal. Riska Zdorov., No. 1, 58 (2016). https://doi.org/10.21668/health.risk/2016.1.07

  8. 8

    I. V. Gmoshinskii, O. V. Bagryantseva, S. A. Arnautov, et al., Heal. Risk Anal., No. 1, 142 (2020). https://doi.org/10.21668/health.risk/2020.1.16.eng

  9. 9

    M. Baek, J.-A. Lee, and S.-J. Choi, Mol. Cell. Toxicol. 8, 95 (2012). https://doi.org/10.1007/s13273-012-0012-x

    CAS  Article  Google Scholar 

  10. 10

    A. K. Sharma, B. Schmidt, H. Frandsen, et al., Mutat. Res. 700, 18 (2010). https://doi.org/10.1016/j.mrgentox.2010.04.021

    CAS  Article  Google Scholar 

  11. 11

    J. Houtman, S. Maisanaba, M. Puerto, et al., Appl. Clay Sci. 90, 150 (2014). https://doi.org/10.1016/j.clay.2014.01.009

    CAS  Article  Google Scholar 

  12. 12

    G. Janer, E. Fernéz-Rosas, E. Mas del Molino, et al., Nanotoxicology 8, 279 (2014). https://doi.org/10.3109/17435390.2013.776123

    CAS  Article  Google Scholar 

  13. 13

    V. V. Smirnova, O. N. Tananova, A. A. Shumakova, et al., Gigiena Sanit., No. 3, 76 (2012).

  14. 14

    E. Afriyie-Gyawu, J. Mackie, B. Dash, et al., Food Addit. Contam. 22, 259 (2005). https://doi.org/10.1080/02652030500110758

    CAS  Article  Google Scholar 

  15. 15

    Y.-H. Lee, T.-F. Kuo, B.-Y. Chen, et al., Biomed. Eng. Appl. Basis Commun. 17 (02), 72 (2005). https://doi.org/10.4015/S1016237205000111

    Article  Google Scholar 

  16. 16

    S. Maisanaba, D. Gutiérrez-Praena, M. Puerto, et al., Appl. Clay Sci. 95, 37 (2014). https://doi.org/10.1016/j.clay.2014.04.006

    CAS  Article  Google Scholar 

  17. 17

    N. N. Gavrilova, V. V. Nazarov, and O. V. Yarovaya, Microscopic Determination Methods Particle Size of Dispersed Materials, The School-Book (RKhTU im. D. I. Mendeleeva, Moscow, 2012) [in Russian].

  18. 18

    C. A. Stuart, R. Twistelton, M. K. Nicholas, and D. W. Hide, Clin. Allergy 14, 533 (1984).

    CAS  Article  Google Scholar 

  19. 19

    D. L. Sarkosov and Yu. L. Perov, Microscopic Technique, The Manual (Meditsina, Moscow, 1996) [in Russian].

  20. 20

    V. A. Shipelin, A. A. Shumakova, A. D. Musaeva, et al., Vopr. Pitan. 89 (3), 52 (2020).

    Google Scholar 

  21. 21

    E. Afriyie-Gyawu, Z. Wang, N. A. Ankrah, et al., Food Addit. Contam., Part A 25, 872 (2008). https://doi.org/10.1080/02652030701854758

    CAS  Article  Google Scholar 

  22. 22

    C. H. Hagedorn and D. H. Alpers, Gastroenterology 73, 1019 (1977).

    CAS  Article  Google Scholar 

  23. 23

    P. H. Degnan, M. E. Taga, and A. L. Goodman, Cell Metab. 20, 769 (2014). https://doi.org/1010.1016/j.cmet.2014.10.002

    CAS  Article  Google Scholar 

  24. 24

    J. F. Forstner and G. G. Forstner, in Physiology of the Gastrointestinal Tract, 3rd ed., Ed. by L. R. Johnson (Raven, New York, 1994), p. 1255.

    Google Scholar 

  25. 25

    G. K. Shlygin, The Role of the Digestive System in Metabolism (Sinergiya, Moscow, 2001) [in Russian].

    Google Scholar 

  26. 26

    S. Chakrabarti, S. Guha, and K. Majumder, Nutrients 10, 1738 (2018). https://doi.org/10.3390/nu10111738

    CAS  Article  Google Scholar 

  27. 27

    A. Sánchez and A. Vázquez, Food Quality Safety 1, 29 (2017). https://doi.org/10.1093/fqsafe/fyx006

    CAS  Article  Google Scholar 

  28. 28

    L. Maxfield and J. S. Crane, Zinc Deficiency, Stat Pearls. https://www.ncbi.nlm.nih.gov/books/NBK493231/.

  29. 29

    H. Summersgill, H. Engl, and G. Lopez-Castejon, et al., Cell Death Dis. 5 (1), e1040 (2014). https://doi.org/10.1038/cddis.2013.547

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the staff of the Federal Research Center of Nutrition and Biotechnology: M.O. Semin for help in analyzing NC samples on a scanning electron microscope and O.A. Pryadko for obtaining preparations for histological studies.

Funding

This work was carried out using the funds of the subsidy for the implementation of the State Task within the Program of Basic Research (topic of the Ministry of Science and Higher Education of the Russian Federation no. 0529-2019-0057).

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. A. Shipelin.

Additional information

Translated by D. Novikova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shipelin, V.A., Gmoshinski, I.V., Sarkisyan, V.A. et al. Influence of Bentonite Nanoclay on the State of the Rat Intestine Protective Barrier in the Experiment. Nanotechnol Russia 15, 492–499 (2020). https://doi.org/10.1134/S199507802004014X

Download citation