New Data on the Influence of the HPV16 E2 Early Protein Obtained in Plant Expression Nanosystems on Tumor Tissues of Female Mice Induced by Injection of HeLa Cancer Cells in Hip Muscle

Abstract

The prospects of creating a therapeutic anti-cancer vaccine using the HPV16 E2 regulatory gene have been investigated. An expression system for the synthesis of early antigenic proteins HPV16 E2, of high-risk papillomavirus based on transgenic tomato fruits has been developed. To induce malignant transformation of tissues, female mice at an age of 6 months were injected with a suspension of HeLa cancer cells into the hip muscle. In 1 month, blood was collected from half of the mice, splenocytes were isolated from the spleen, and alterations in internal organs, including the lungs, were studied. The other half of the HeLa-injected mice received a peroral inoculation with vaccine material from tomatoes with HPV16 E2 (500 mg of E2 protein per mouse). In 1 month, blood was collected from the vaccinated mice, splenocytes were isolated, and alterations in internal organs were investigated. After the injection of HeLa tumor cells, the lungs increased in size and contained various tumors. The mice with HeLa administration and the peroral HPV16 E2 vaccination had no specific abnormalities in the size and morphology of the lungs. Comparing the levels of interferon, CD4 and CD8 T lymphocytes, as well as the cells that interacted with anti-granzyme B and anti-perforin antibodies, showed that HPV16 E2 vaccination increased the number of cells that bind antibodies to interferon, CD4 and CD8 T lymphocytes, granzyme B, and perforin by 1.5–2 orders of magnitude. The HPV16 E2 protein can significantly suppress the proliferation of cancer cells and can be used for the creation of a therapeutic vaccine against a cancer caused by the most highly oncogenic type of papillomavirus, HPV16.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. 1

    S. Syrjanen, Eur. J. Oral Sci. 126, 49 (2018). https://doi.org/10.1111/eos.12538

    Article  Google Scholar 

  2. 2

    M. Upadhyay and P. Vivekanandon, Plos One 10 (11), e0142368 (2015). https://doi.org/10.1371/journal.pone.0142368

    CAS  Article  Google Scholar 

  3. 3

    K. van Doorslaer, V. Ruoppolo, A. Schmidt, et al., Virus Evolution 3 (2), vex027 (2017). https://doi.org/10.1093/ve/vex027

  4. 4

    S. Menon, A. Wusiman, M. C. Boily, et al., Plos One 11 (10), e0163965 (2016). https://doi.org/10.1371/journal.pone.0163965

    CAS  Article  Google Scholar 

  5. 5

    N. Egawa and J. Doorbar, Virus Res. 231, 119 (2017). https://doi.org/10.1016/j.virusres. 2016.12.017

  6. 6

    N. N. Venkatesan, H. S. Pine, and M. P. Underbrink, Otolaryngol. Clin. North Am. 45, 671-ix (2012). https://doi.org/10.1016/j.otc.2012.03.006

    Article  Google Scholar 

  7. 7

    R. Y. Seedat, Pediatr. Health, Med. Ther. 11, 39 (2020). https://doi.org/10.2147/PHMT.S200186

    CAS  Article  Google Scholar 

  8. 8

    A. Touze, S. de Sanjose, P. Coursaget, et al., J. Clin. Microbiol. 39, 4344 (2001). https://doi.org/10.1128/jcm.39.12.4344-4348.2001

    CAS  Article  Google Scholar 

  9. 9

    F. X. Bosch, T. R. Broker, D. Forman, et al., Vaccine 31, I1-31 (2013). https://doi.org/10.1916/j.vaccine.2013.07026

    Article  Google Scholar 

  10. 10

    J. Ferlay, F. Bray, P. Pisany, et al., GLOBOCAN 2002: Cancer Incidence, Mortality, and Prevalence Worldwide, Version 2.0, IARC CancerBase No. 5 (Int. Agency Res. Cancer, Lyon, France, 2004).

    Google Scholar 

  11. 11

    L. E. Markowitz, E. F. Dunne, M. Saraiya, et al., Morbid. Mortal. Weekly Rep. Recomm. Rep. 63, 1 (2014).

    Google Scholar 

  12. 12

    S. Taylor, E. Bunge, M. Bakker, and X. Castellsague, BMC Infectious Diseases 16, 293 (2016). https://doi.org/10.1186/S12879-016-1633-9

    Article  Google Scholar 

  13. 13

    M. Dadar, S. Chakraborty, K. Dhama, et al., Front. Immunol. 9, 2478 (2018). https://doi.org/10.3389/fimmu.2018.02478

    CAS  Article  Google Scholar 

  14. 14

    A. Yang, J. Jeang, K. Cheng, et al., Expert Rev. Vaccines 15, 989 (2016). https://doi.org/10.1586/14760584.2016.1157477

    CAS  Article  Google Scholar 

  15. 15

    R. K. Salyaev, N. I. Rekoslavskaya, A. S. Stolbikov, and A. V. Tretyakova, Dokl. Biochem. Biophys. 474, 186 (2017). https://doi.org/10.1134/S1607672917030140

    CAS  Article  Google Scholar 

  16. 16

    J. Mold, P. Reu, A. Olin, et al., PLOS Biol. 17, e3000383 (2019). https://doi.org/10.1371/journal.pbio.3000383

    CAS  Article  Google Scholar 

  17. 17

    H. J. McFarl, J. D. Berkson, and J. P. Lee, et al., Vaccine 33, 3865 (2015). https://doi.org/10.1016/j.vaccine.2015.06.070

    CAS  Article  Google Scholar 

  18. 18

    L. Muller, P. Aigner, and D. Stoiber, Front. Immunol. 8, 304 (2017). https://doi.org/10.3389/fimmu.2017.00304

    CAS  Article  Google Scholar 

  19. 19

    R. K. Salyaev, N. I. Rekoslavskaya, and A. S. Stolbikov, Dokl. Biochem. Biophys. 488, 316 (2019). https://doi.org/10.1134/S1607672919050077

    CAS  Article  Google Scholar 

  20. 20

    W. M. Schneider, M. D. Chevillotte, and C. M. Rice, Ann. Rev. Immunol. 32, 513 (2014). https://doi.org/10.1146/annurev-immunol-032713-120231

    CAS  Article  Google Scholar 

  21. 21

    M. de Smet, S. Kanginakudru, A. Rietz, et al., PLOS Pathogens. 12, e1005934 (2016). https://doi.org/10.1371/journal.ppat.1005934

  22. 22

    W. Alazawi, M. Pett, S. Strauss, et al., Brit. J. Cancer 91, 2063 (2004). https://doi.org/10.1038/sj.bjc.6602237

    CAS  Article  Google Scholar 

  23. 23

    R. K. Salyaev, N. I. Rekoslavskaya, and A. S. Stolbikov, Dokl. Biochem. Biophys. 488, 296 (2019). https://doi.org/10.1134/S1607672919050028

    CAS  Article  Google Scholar 

  24. 24

    R. K. Salyaev, N. I. Rekoslavskaya, and A. S. Stolbikov, Dokl. Biochem. Biophys. 482, 271 (2018). https://doi.org/10.1134/S1607672918050113

    CAS  Article  Google Scholar 

  25. 25

    R. K. Salyaev, N. I. Rekoslavskaya, and A. S. Stolbikov, Dokl. Biochem. Biophys. 484, 52 (2019). https://doi.org/10.1134/S1607672919010150

    CAS  Article  Google Scholar 

  26. 26

    V. Koundal, Q. Mohd, R. Haq, and S. Praveen, Biochem. Genet. 49, 25 (2011). https://doi.org/10.1007/S10528-010-9382-8

    CAS  Article  Google Scholar 

  27. 27

    J. A. Chichester, R. M. Jones, B. J. Green, et al., Viruses 4, 3227 (2012). https://doi.org/10.3390/v4113227

  28. 28

    W. Phoolcharoen, Q. Dye, J. Kilbourne, et al., Proc. Natl. Acad. Sci. U. S. A. 108, 20695 (2011). https://doi.org/10.1073/pnas.1117715108/-/DCSupplemental

    CAS  Article  Google Scholar 

  29. 29

    S. Marillonnet, A. Giritch, M. Gils, et al., Proc. Natl. Acad. Sci. U. S. A. 101, 6852 (2004). https://doi.org/10.1073/pnas.0400149101

    CAS  Article  Google Scholar 

  30. 30

    R. K. Salyaev, N. I. Rekoslavskaya, A. S. Stolbikov, and A. V. Tretyakova, Dokl. Biochem. Biophys. 468, 187 (2016). https://doi.org/10.1134/S1607672916030078

    CAS  Article  Google Scholar 

  31. 31

    C. Foresta, C. Patassini, A. Bertoldo, et al., PLoS One 6, e15036 (2011). https://doi.org/10.1371/journal.pone.0015036

    CAS  Article  Google Scholar 

  32. 32

    M. Dreer, J. Fertey, S. van de Poel, et al., PLOS Pathogens 12, e1005556 (2016). https://doi.org/10.1371/journal.ppat.1005556

    CAS  Article  Google Scholar 

  33. 33

    N. Wong, P. Major, A. Kapoor, et al., Oncotarget 7, 83115 (2016).

    Article  Google Scholar 

  34. 34

    R. Rosales, M. Lopez-Countreras, C. Rosales, et al., Human Gene Ther. 25, 1035 (2014). https://doi.org/10.1089/hum.2014.024

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to R. K. Salyaev or N. I. Rekoslavskaya.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by M. Novikova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salyaev, R.K., Rekoslavskaya, N.I. & Stolbikov, A.S. New Data on the Influence of the HPV16 E2 Early Protein Obtained in Plant Expression Nanosystems on Tumor Tissues of Female Mice Induced by Injection of HeLa Cancer Cells in Hip Muscle. Nanotechnol Russia 15, 516–522 (2020). https://doi.org/10.1134/S1995078020040138

Download citation