Short-Term Introduction of Fullerene C60 Nanoparticles in Rat Small Intestine Induces the Rapid Development of Hepatocyte Pathology

Abstract

Fullerenes C60 are used in various fields of industry; therefore, issues of studying their biosafety for living organisms, their biodistribution in organs and tissues organs and tissues of laboratory animals, and their induction of cellular pathologies are very important. In recent years, analytical and transmission electron microscopy (TEM) have proven their efficiency in detecting carbon nanoparticles in biological samples. Combining these methods can reveal pathological changes in cells induced by nanoparticles and detect accumulations of nanoparticles in them. The aim of the study was to reveal cellular pathologies upon direct short-term administration of fullerene C60 nanoparticles into the gastrointestinal tract (GIT) of rats and to detect nanoparticles in samples of the small intestine and liver. The histological and ultrastructural analysis did not reveal pathological changes in the small intestine, but degenerative changes in hepatocytes were indicated in the form of accumulation of lipid inclusions. High-performance liquid chromatography and analytical TEM revealed no accumulations of fullerene C60 nanoparticles in the studied samples. Probably, hepatosteatosis may be a consequence of the indirect influence of C60 nanoparticles on liver cells. Apparently, the surface of fullerene C60 undergoes modifications in the GIT, and its contact with the cells of the small intestine induces the synthesis of proinflammatory cytokines, with their subsequent entry into the liver, leading to the rapid development of fatty degeneration. Revealing and identifying modified C60 nanoparticles and their metabolites, in turn, is a complex problem, which in the future can be solved using radiotracers, mass spectrometry, and modern metabolomic technologies.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. 1

    R. Bakry, M. Najam-ul-haq, and C. W. Huck, Int. J. Nanomed. 2 (4), 639 (2007).

    CAS  Google Scholar 

  2. 2

    A. Husen and K. S. Siddiqi, J. Nanobiotechnol. 12, 16 (2014). doi

  3. 3

    O. Zaytseva and G. Neumann, Chem. Biol. Technol. Agric. 3, 1 (2016). https://doi.org/10.1186/s40538-016-0070-8

    CAS  Article  Google Scholar 

  4. 4

    I. Steffensen, J. Alexer, M. Binderup, et al., (Norwegian Scientific Committee for Food Safety, 2010), p. 7.

  5. 5

    V. A. Shipelin, I. V. Gmoshinski, V. A. Tutel’yan, et al., Nanotechnol. Russ. 8, 810 (2013). https://doi.org/10.1134/S1995078013060141

    Article  Google Scholar 

  6. 6

    F. Moussa, F. Trivin, R. Céolin, et al., Fullerene Sci. Technol. 4, 21 (1996). https://doi.org/10.1080/10641229608001534

    CAS  Article  Google Scholar 

  7. 7

    P. Rajagopalan, F. Wudl, R. F. Schinazi, and F. D. Boudinot, Antimicrob. Agents Chemother. 40, 2262 (1996).

    CAS  Article  Google Scholar 

  8. 8

    A. S. Shebanova, A. G. Bogdanov, T. T. Ismagulova, A. V. Feofanov, P. I. Semenyuk, V. I. Muronets, M. V. Erokhina, G. E. Onishchenko, M. P. Kirpichnikov, and K. V. Shaitan, Biophysics 59, 284 (2014).

    CAS  Article  Google Scholar 

  9. 9

    G. Griffiths, Encyclopedia of Molecular Cell Biology and Molecular Medicine, 2nd ed. (Wiley-VCH, Weinheim, 2006), p. 21.

    Google Scholar 

  10. 10

    G. Botton and S. Prabhudev, in Springer Handbook of Microscopy (Springer, New York, 2019), p. 345.

    Google Scholar 

  11. 11

    R. M. Glaeser and G. Thomas, Biophys. J. 9, 1073 (1969).

    CAS  Article  Google Scholar 

  12. 12

    G. E. Onishchenko, M. V. Erokhina, S. S. Abramchuk, et al., Bull. Exp. Biol. Med. 154, 265 (2012).

    CAS  Article  Google Scholar 

  13. 13

    G. Plascencia-Villa, C. R. Starr, L. S. Armstrong, et al., Integr. Biol. 4, 1358 (2012). https://doi.org/10.1039/c2ib20172k

    CAS  Article  Google Scholar 

  14. 14

    R. S. Rhodes and M. J. Karnovsky, Lab. Invest. U. S. 25, 220 (1971).

    CAS  Google Scholar 

  15. 15

    S. Yamago, H. Tokuyama, E. Nakamura, et al., Chem. Biol. 2, 385 (1995). https://doi.org/10.1016/1074-5521(95)90219-8

    CAS  Article  Google Scholar 

  16. 16

    T. Baati, F. Bourasset, N. Gharbi, et al., Biomaterials 33, 4936 (2012). https://doi.org/10.1016/j.biomaterials.2012.03.036

    CAS  Article  Google Scholar 

  17. 17

    V. A. Shipelin, E. A. Arianova, E. N. Trushina, et al., Gigiena Sanit. 2, 90 (2012).

    Google Scholar 

  18. 18

    G. Volkheimer, Adv. Pharmacol. Chemother. 14, 163 (1977). https://doi.org/10.1016/s1054-3589(08)60188-x

    CAS  Article  Google Scholar 

  19. 19

    V. A. Shipelin, L. I. Avren’eva, G. V. Guseva, et al., Vopr. Pitan. 81 (5), 20 (2012).

    CAS  Google Scholar 

  20. 20

    E. V. Litasova, V. V. Iljin, A. V. Sokolov, et al., Dokl. Biochem. Biophys. 471, 417 (2016). https://doi.org/10.1134/S1607672916060119

    CAS  Article  Google Scholar 

  21. 21

    B. F. Pycke, T. C. Chao, P. Herckes, et al., Anal. Bioanal. Chem. 404, 2583 (2012). https://doi.org/10.1007/s00216-012-6090-8

    CAS  Article  Google Scholar 

  22. 22

    T. Halenova, N. Raksha, T. Vovk, et al., Int. J. Obes. 42, 1987 (2018). https://doi.org/10.1038/s41366-018-0016-2

    CAS  Article  Google Scholar 

  23. 23

    T. I. Halenova, I. M. Vareniuk, N. M. Roslova, et al., RSC Adv. 6, 100046 (2016). https://doi.org/10.1039/C6RA20291H

    CAS  Article  Google Scholar 

  24. 24

    R. Yachi, C. Muto, N. Ohtaka, et al., J. Clin. Biochem. Nutr. 52, 146 (2013). https://doi.org/10.3164/jcbn.12-101

    CAS  Article  Google Scholar 

  25. 25

    F. Wrer, S. Liebig, and S. Marhenke, et al., Cell. Death. Dis. 11, 212 (2020). https://doi.org/10.1038/s41419-020-2411-6

    CAS  Article  Google Scholar 

  26. 26

    N. Mariappan, C. M. Elks, B. Fink, and J. Francis, Free Radic. Biol. Med. 46, 462 (2009). https://doi.org/10.1016/j.freeradbiomed.2008.10.049

    CAS  Article  Google Scholar 

  27. 27

    C. P. Day and O. F. James, Gastroenterology. 114, 842 (1998).

    CAS  Article  Google Scholar 

  28. 28

    I. Gitsov, A. Simonyan, L. Wang, et al., J. Polymer Sci., A 50, 119 (2012). https://doi.org/10.1002/pola.24995

    CAS  Article  Google Scholar 

  29. 29

    Y. Liu, F. Jiao, Y. Qiu, et al., Nanotechnology 20, 415102 (2009). https://doi.org/10.1088/0957-4484/20/41/415102

    CAS  Article  Google Scholar 

  30. 30

    K. Xiang, Z. Dou, Y. Li, et al., Nanosci. Nanotechnol. 12, 2169 (2012). https://doi.org/10.1166/jnn.2012.5681

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to L.S. Vasilevskaya for her help in conducting the experiment on an isolated loop of rat intestine.

Funding

The study was supported by subsidies for implementation of a state task within the Program of Fundamental Scientific Research of the Russian Federation Ministry of Education and Science (topic no. 0529-2019-0057).

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. G. Masyutin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Masyutin, A.G., Erokhina, M.V., Shipelin, V.A. et al. Short-Term Introduction of Fullerene C60 Nanoparticles in Rat Small Intestine Induces the Rapid Development of Hepatocyte Pathology. Nanotechnol Russia 15, 483–491 (2020). https://doi.org/10.1134/S1995078020040102

Download citation