Desorption Properties and Bactericidal and Fungicidal Activity of Nanostructured Coatings Based on Hexagonal Boron Nitride Saturated with Therapeutic Preparations

Abstract

The study is aimed at creating nanostructured coatings based on hexagonal boron nitride with a high sorption capacity with respect to various therapeutic drugs and prolonged antibacterial effect due to gradual release into the physiological environment. The coatings were obtained via interaction of gaseous ammonia with a precursor of amorphous boron nanoparticles. The antibiotics gentamicin sulfate and ciprofloxacin and the antifungal drug amphotericin B were used as bactericides. The release kinetics of the antibiotics were assayed for different pH values. Antibacterial studies showed that all types of coatings are bactericidal to the antibiotic-resistant strain Escherichia coli K-261. Coatings saturated with amphotericin B showed antifungal activity against various ascomycete strains Neurospora crassa wild type wt-987 and nitrogen metabolism mutants nit-2 and nit-6.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    Y. Liu, P. Ji, H. Lv, et al., Int. J. Biol. Macromol. 98, 550 (2017). https://doi.org/10.1016/j.ijbiomac.2017.01.121

    CAS  Article  Google Scholar 

  2. 2

    H. R. Bakhsheshi-Rad, Z. Hadisi, E. Hamzah, et al., Mater. Lett. 207, 179 (2017). https://doi.org/10.1016/j.matlet.2017.07.072

    CAS  Article  Google Scholar 

  3. 3

    D. Ionita, D. Bajenaru-Georgescu, G. Totea, et al., Int. J. Pharm. 517, 296 (2017). https://doi.org/10.1016/j.ijpharm.2016.11.062

    CAS  Article  Google Scholar 

  4. 4

    W. Zhou, Z. Jia, P. Xiong, et al., Mater. Sci. Eng. C 90, 693 (2018). https://doi.org/10.1016/j.msec.2018.04.069

    CAS  Article  Google Scholar 

  5. 5

    K. Glinel, P. Thebault, V. Humblot, et al., Acta Biomater. 8, 1670 (2012). https://doi.org/10.1016/j.actbio.2012.01.011

    CAS  Article  Google Scholar 

  6. 6

    M. Bhardwaj, B. R. Singh, D. K. Sinha, et al., Pharm. Anal. Acta 7, 523 (2016). https://doi.org/10.4172/2153-2435.1000523

    Article  Google Scholar 

  7. 7

    A. Giedraitiene, A. Vitkauskiene, R. Naginiene, et al., Medicina (Kaunas) 47, 137 (2011). https://doi.org/10.3390/medicina47030019

    Article  Google Scholar 

  8. 8

    N. Woodford, A. P. Johnson, D. Morrison, et al., Clin. Microbiol. Rev. 8, 585 (1995).

    CAS  Article  Google Scholar 

  9. 9

    A. S. Konopatsky, D. V. Leybo, K. L. Firestein, et al., J. Catal. 368, 217 (2018). doi.org/https://doi.org/10.1016/j.jcat.2018.10.016

    CAS  Article  Google Scholar 

  10. 10

    I. V. Sukhorukova, I. V. Zhitnyak, A. M. Kovalskii, et al., ACS Appl. Mater. Interfaces 7, 17217 (2015). https://doi.org/10.1021/acsami.5b04101

    CAS  Article  Google Scholar 

  11. 11

    M. Yamaguchi, D. M. Tang, C. Zhi, et al., Acta Mater. 60, 6213 (2012). doi.org/https://doi.org/10.1016/j.actamat.2012.07.066

    CAS  Article  Google Scholar 

  12. 12

    K. L. Firestein, A. E. Shteinman, I. S. Golovin, et al., Mater. Sci. Eng. A 642, 104 (2015).https://doi.org/10.1016/j.msea.2015.06.059

    CAS  Article  Google Scholar 

  13. 13

    M. Yamaguchi, J. Bernhardt, K. Firestein, et al., Acta Mater. 61, 7604 (2013).https://doi.org/10.1016/j.actamat.2013.08.062

    CAS  Article  Google Scholar 

  14. 14

    A. Pakdel, Y. Bo, D. Shtansky, et al., Surf. Innov. 1, 32 (2013). https://doi.org/10.1680/si.12.00007

    CAS  Article  Google Scholar 

  15. 15

    X. Chen, P. Wu, M. Rousseas, D. Okawa, et al., J. Am. Chem. Soc. 131, 890 (2009).https://doi.org/10.1021/ja807334b

    CAS  Article  Google Scholar 

  16. 16

    L. Li, L. H. Li, S. Ramakrishnan, et al., J. Phys. Chem. C 116, 18224 (2012).https://doi.org/10.1021/jp306148e

    CAS  Article  Google Scholar 

  17. 17

    G. Ciofani, S. Danti, G. G. Genchi, et al., Small 9, 1672 (2013). https://doi.org/10.1002/smll.201201315

    CAS  Article  Google Scholar 

  18. 18

    M. Emanet, O. Sen, and M. Culha, Nanomedicine 12, 797 (2017). https://doi.org/10.2217/nnm-2016-0322

    CAS  Article  Google Scholar 

  19. 19

    H. Türkez, M. E. Arslan, E. Sönmez, et al., Cytotechnology 71, 351 (2019). https://doi.org/10.1007/s10616-019-00292-8

    CAS  Article  Google Scholar 

  20. 20

    N. Wang, H. Wang, C. Tang, et al., Int. J. Nanomed. 12, 5941 (2017). https://doi.org/10.2147/ijn.s130960

    CAS  Article  Google Scholar 

  21. 21

    I. Ferah, The Effects of Boron Nitride and/or Hydroxyapatite Compounds on Experimentally Induced Osteomyelitis Following Open Femoral Fracture in Rats (Health Sciences Institute, Atatürk Univ., Erzurum, Turkey, 2015).

    Google Scholar 

  22. 22

    D. Lahiri, F. Rouzaud, T. Richard, et al., Acta Biomater. 6, 3524 (2010). https://doi.org/10.1016/j.actbio.2010.02.044

    CAS  Article  Google Scholar 

  23. 23

    X. Chen, P. Wu, M. Rousseas, et al., J. Am. Chem. Soc. 131, 890 (2009).https://doi.org/10.1021/ja807334b

    CAS  Article  Google Scholar 

  24. 24

    M. Ikram, I. Jahan, A. Haider, et al., Appl. Nanosci. 10, 2339 (2020).https://doi.org/10.1007/s13204-020-01412-z

    CAS  Article  Google Scholar 

  25. 25

    J. C. O. Sardi, L. Scorzoni, T. Bernardi, et al., J. Med. Microbiol. 62, 10 (2013). https://doi.org/10.1099/jmm.0.045054-0

    CAS  Article  Google Scholar 

  26. 26

    A. T. Matveev, K. L. Firestein, A. E. Steinman, et al., Nano Res. 8, 2063 (2015).https://doi.org/10.1007/s12274-015-0717-y

    CAS  Article  Google Scholar 

  27. 27

    V. Tiana, Sh. Tang, Ch.-D. Wang, et al., Colloids Surf., B 123, 403 (2014).https://doi.org/10.1016/j.colsurfb.2014.09.050

    CAS  Article  Google Scholar 

  28. 28

    I. V. Sukhorukova, A. N. Sheveyko, A. Manakhov, et al., Mater. Sci. Eng. C 90, 289 (2018).https://doi.org/10.1016/j.msec.2018.04.068

    CAS  Article  Google Scholar 

  29. 29

    O. Fursova, V. Potapov, A. Brouchkov, et al., Probiotics Antimicrob. Prot. 4, 145 (2012).https://doi.org/10.1007/s12602-012-9105-z

    CAS  Article  Google Scholar 

  30. 30

    E. S. Permyakova, L. Y. Antipina, A. M. Kovalskii, et al., J. Phys. Chem. C 122, 26409 (2018). https://doi.org/10.1021/acs.jpcc.8b07531

    CAS  Article  Google Scholar 

  31. 31

    E. S. Permyakova, L. Yu. Antipina, P. V. Kiryukhantsev-Korneev, et al., Nanomaterials 9, 1658 (2019). https://doi.org/10.3390/nano9121658

    CAS  Article  Google Scholar 

  32. 32

    A. Brouchkov, V. Melnikov, L. Kalenova, et al., in Psychrophiles: From Biodiversity to Biotechnology, Ed. by R. Margesin (Springer, Switzerland, 2017), p. 541. https://doi.org/10.1007/978-3-319-57057-0_23

    Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (contract 20-19-00120), as well as by the Ministry of Education and Science of the Russian Federation (NUST MISIS Competitiveness Enhancement Program no. K2A-2018-038) for IR spectroscopy studies (K.Yu. Gudz).

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Yu. Gudz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gudz, K.Y., Permyakova, E.S., Matveev, A.T. et al. Desorption Properties and Bactericidal and Fungicidal Activity of Nanostructured Coatings Based on Hexagonal Boron Nitride Saturated with Therapeutic Preparations. Nanotechnol Russia 15, 445–450 (2020). https://doi.org/10.1134/S1995078020040047

Download citation