Abstract
The biological activity of selenium nanoparticles (NPs) encapsulated in a starch matrix (NC Se/St) against the bacterium causing the potato ring rot Clavibacter sepedonicus (Cms) and potato plants in vitro has been studied. It was found that the NC Se/St consisted of spherical selenium NPs of a wide dimension range, which formed clusters. The NC Se/St was characterized by bactericidal and antibiofilm activity against the Cms bacteria. The experiments with plants have demonstrated the stimulating effect of the NC Se/St based on its influence on the biometric parameters. The nanocomposite (NC) reduced the negative effect of the infection of potato plants with Cms by increasing the plant protective functions. Meanwhile, it was revealed that selenium did not accumulate in potato tissues after the treatment with the NC Se/St is established. It was revealed also that the NC Se/St does not suppress soil bacteria Acinetobacter quilouiace and Rhodococcus erythropolis. The results obtained allow us to consider NC Se/St as an effective and environmentally safe agent for stimulating the development of agricultural plants due to the targeted low-dose delivery of antimicrobial nanoselenium biocomposites to bacterial phytopathogens.
This is a preview of subscription content, access via your institution.







REFERENCES
- 1
R. A. C. Jones, CAB Rev. Persp. Agricult. Vet. Sci. Nutrit. Nat. Resour. 2, 461 (2012). https://doi.org/10.1079/PAVSNNR20127022
- 2
M. Godefroid, A. Cruaud, J. C. Streito, et al., Sci. Rep., No. 8844 (2019). https://doi.org/10.1038/s41598-019-45365-y
- 3
N. Helen and S. J. Gurr, BMC Biol. 15, 36 (2017). https://doi.org/10.1186/s12915-017-0376-4
- 4
R. Eichenlaub and K. H. Gartemann, Ann. Rev. Phytopathol. 49, 445 (2011). https://doi.org/10.1146/annurev-phyto-072910-095258
- 5
X. Li, J. Tambong, K. Yuan, et al., Int. J. Syst. Evol. Microbiol. 68, 234 (2018). https://doi.org/10.1099/ijsem.0.002492
- 6
G. A. Secor, L. de Buhr, and N. C. Gudmestad, Plant Disease. 72, 585 (1988).
- 7
J. M. van der Wolf, J. G. Elphinstone, D. E. Stead, et al., Plant Res. Report No. 95 (Plant Research Int. B. V. Wageningen, Wageningen, 2005). http://edepot.wur.nl/39352
- 8
E. G. Potievskii and A. K. Novikov, Medical Aspects of Pectin Use (Meditsinskaya Kniga, Moscow, 2002) [in Russian].
- 9
L. G. Babeshina, Ya. V. Gorina, A. P. Kolokolova, et al., J. Sib. Fed. Univ., Chem. 4, 413 (2010).
- 10
A. V. Valyshev, Byull. Orenb. Nauch. Tsentra UrO RAN, No. 3, 1 (2013).
- 11
H. Shibata, I. KimuraTakagi, M. Nagaoka, et al., J. Nutr. Sci. Vitaminol. 45, 325 (1999).
- 12
O. R. Akhedov, Sh. A. Shomurotov, G. G. Rakhanova, et al., Khim. Rastit. Syr’ya, No. 3, 19 (2016). https://doi.org/10.14258/jcprm.2016031092
- 13
I. V. Babushkina, E. V. Gladkova, and D. M. Puchin’yan, Sovrem. Probl. Nauki Obrazov., No. 5, 33 (2016).
- 14
L. M. Gavrikova, Vestn. Altaisk. Agrar. Univ., No. 6 (32), 29 (2007).
- 15
A. M. Bulgakov and L. M. Gavrikova, Vestn. Altaisk. Agrar. Univ., No. 3 (29), 47 (2007).
- 16
A. V. Papkina, A. I. Perfileva, M. A. Zhivet’yev, et al., Nanotechnol. Russ. 10, 484 (2015).
- 17
I. A. Graskova, A. I. Perfileva, O. A. Nozhkina, et al., Khim. Rastit. Syr’ya, No. 3, 345 (2019). https://doi.org/10.14258/jcprm.2019034794
- 18
O. A. Nozhkina, A. I. Perfileva, I. A. Graskova, A. V. Dyakova, V. N. Nurminsky, I. V. Klimenkov, T. V. Ganenko, T. N. Borodina, G. P. Aleksandrova, B. G. Sukhov, and B. A. Trofimov, Nanotechnol. Russ. 14, 255 (2019). https://doi.org/10.21517/1992-7223-2019-5-6-79-86
- 19
A. I. Perfileva, O. A. Nozhkina, I. A. Graskova, A. V. Dyakova, A. G. Pavlova, G. P. Aleksandrova, I. V. Klimenkov, B. G. Sukhov, and B. A. Trofimov, Dokl. Biol. Sci. 489, 184 (2019). https://doi.org/10.31857/S0869-56524893325-330
- 20
A. I. Perfileva, O. A. Nozhkina, I. A. Graskova, A. V. Sidorov, M. V. Lesnichaya, G. P. Aleksandrova, G. Dolmaa, I. V. Klimenkov, and B. G. Sukhov, Russ. Chem. Bull. 67, 157 (2018). https://doi.org/10.31255/978-5-94797-319-8-626-629
- 21
A. S. Romanenko, A. A. Riffel, I. A. Graskova, et al., J. Phytopathol. 147, 679 (1999). https://doi.org/10.1046/j.1439-0434.1999.00450.x
- 22
N. J. M. Roozen and J. W. L. van Vuurde, Netherlands J. Plant Pathol. 97, 321 (1991).
- 23
I. A. Shaginyan, G. A. Danilina, M. Yu. Chernukha, et al., Zh. Mikrobiol. Epidemiol. Immunobiol., No. 1, 3 (2007).
- 24
A. N. Boyarkin, Biokhimiya 16, 352 (1951).
- 25
Yu. A. Vladimirov and A. I. Archakov, Lipid Peroxidation in Biological Membranes (Nauka, Moscow, 1972) [in Russian].
- 26
Y. Huang, Z. Bie, Z. Liu, et al., Soil Sci. Plant Nutrit. 55, 698 (2009).
- 27
B. G. Furtana and R. Tipirdamaz, Turk. J. Biol. 34, 287 (2010).
- 28
E. N. Oleshuk, A. N. Grits, E. G. Popov, et al., Proc. Natl. Acad. Sci. Belarus, Biol. Ser., No. 4, 33 (2016).
- 29
Yu. E. Kolupaev and Yu. V. Karpets, Reactive Oxygen Species, Antioxidants and Plant Resistance to Stressors (Logos, Kiev, 2019) [in Russian].
- 30
S. I. Zandalinas and R. Mittler, Free Radic. Biol. Med. 122, 21 (2018). https://doi.org/10.1016/j.freeradbiomed.2017.11.028
- 31
S. K. Kohli, K. Khanna, and R. Bhardwaj, Antioxidants (Basel) 12 (8), 12 (2019). https://doi.org/10.3390/antiox8120641El
- 32
L. N. Kurganova, Soros. Obrazov. Zh., No. 6, 76 (2001).
- 33
A. S. Petukhov, N. A. Khritokhin, and G. A. Petukhova, Vestn. RUDN, Ser. Ekol. Bezopasn. Zhiznedeyat. 26 (1), 82 (2018). https://doi.org/10.22363/2313-2310-2018-26-1-82-90
- 34
A. F. Mehdawi, E. A. H. Pilon-Smits, Plant Biol. 14, 1 (2012). https://doi.org/10.1111/j.1438-8677.2011.00535.x
- 35
C. K. Bempah, A. Donkor, P. O. Yeboah, et al., Food Chem. 128, 1058 (2011).
- 36
M. Hijosa-Valsero, E. Bécares, C. Fernández-Aláez, et al., Sci. Total Environ. 544, 797 (2016).
- 37
A. Ukalska-Jaruga, B. Smreczak, and G. Siebielec, Molecules 29 (3), 25 (2020). https://doi.org/10.3390/molecules25030587
- 38
F. Zhang, J. He, Y. Yao, et al., Environ. Monit. Assess. 185, 6893 (2013). https://doi.org/10.1007/s10661-013-3073-y
- 39
M. Baćmaga, J. Wyszkowska, and J. Kucharski, Ecotoxicol. 27, 1188 (2018). https://doi.org/10.1007/s10646-018-1968-7
- 40
E. A. Ivantsova, Vestn. Volgogr. Univ., Ser. 11: Estestv. Nauki, No. 1 (5), 35 (2013).
- 41
M. Schiavon and E. A. H. Pilon-Smits, New Phytolog. 213, 1582 (2017). https://doi.org/10.1111/nph.14378
- 42
X. Chen, S. He, X. Liu, et al., Ecotoxicol. Environ. Safety 159, 190–197 (2018). https://doi.org/10.1016/j.ecoenv.2018.04.047
- 43
A. A. Adegoke, T. Mvuyo, and A. I. Okoh, J. Basic Microbiol. 52, 620 (2012). https://doi.org/10.1002/jobm.201100323
- 44
C. C. de Carvalho and M. M. da Fonseca, Appl. Microbiol. Biotechnol. 67, 715 (2005). https://doi.org/10.1007/s00253-005-1932-3
- 45
M. S. Tret’yakova, L. A. Belovezhets, Yu. A. Markova, et al., Agrokhimiya, No. 12, 46 (2017).
- 46
M. S. Tretyakova, M. V. Ivanova, L. A. Belovezhets, and Yu. A. Markova, IOP Conf. Ser. Earth Environ. Sci. 315, 1 (2019).
- 47
S. S. Murodova and K. D. Davranov, Microbiol. Biotechnol., No. 4, 61 (2015).
ACKNOWLEDGMENTS
The study was carried out using the collections of the Center for Collective Use “Bioresource Center” of the Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences; the Center for Collective Use “Ultramicroanalysis” of the Limnological Institute, Siberian Branch, Russian Academy of Sciences (http://www.lin.irk.ru/copp/rus/); and the material and technical base of the Baikal Analytical Center for Collective Use.
Funding
This study was carried out with the partial financial support for young PhD scientists by the President of the Russian Federation (grant no. MK-1220.2019.11), project AAAA-A19-119022690046-4.
Author information
Affiliations
Corresponding author
Additional information
Translated by D. Novikova
Rights and permissions
About this article
Cite this article
Perfileva, A.I., Nozhkina, O.A., Tretyakova, M.S. et al. Biological Activity and Environmental Safety of Selenium Nanoparticles Encapsulated in Starch Macromolecules. Nanotechnol Russia 15, 96–104 (2020). https://doi.org/10.1134/S1995078020010152
Received:
Revised:
Accepted:
Published:
Issue Date: