Biological Activity and Environmental Safety of Selenium Nanoparticles Encapsulated in Starch Macromolecules

Abstract

The biological activity of selenium nanoparticles (NPs) encapsulated in a starch matrix (NC Se/St) against the bacterium causing the potato ring rot Clavibacter sepedonicus (Cms) and potato plants in vitro has been studied. It was found that the NC Se/St consisted of spherical selenium NPs of a wide dimension range, which formed clusters. The NC Se/St was characterized by bactericidal and antibiofilm activity against the Cms bacteria. The experiments with plants have demonstrated the stimulating effect of the NC Se/St based on its influence on the biometric parameters. The nanocomposite (NC) reduced the negative effect of the infection of potato plants with Cms by increasing the plant protective functions. Meanwhile, it was revealed that selenium did not accumulate in potato tissues after the treatment with the NC Se/St is established. It was revealed also that the NC Se/St does not suppress soil bacteria Acinetobacter quilouiace and Rhodococcus erythropolis. The results obtained allow us to consider NC Se/St as an effective and environmentally safe agent for stimulating the development of agricultural plants due to the targeted low-dose delivery of antimicrobial nanoselenium biocomposites to bacterial phytopathogens.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    R. A. C. Jones, CAB Rev. Persp. Agricult. Vet. Sci. Nutrit. Nat. Resour. 2, 461 (2012). https://doi.org/10.1079/PAVSNNR20127022

    Article  Google Scholar 

  2. 2

    M. Godefroid, A. Cruaud, J. C. Streito, et al., Sci. Rep., No. 8844 (2019). https://doi.org/10.1038/s41598-019-45365-y

  3. 3

    N. Helen and S. J. Gurr, BMC Biol. 15, 36 (2017). https://doi.org/10.1186/s12915-017-0376-4

    CAS  Article  Google Scholar 

  4. 4

    R. Eichenlaub and K. H. Gartemann, Ann. Rev. Phytopathol. 49, 445 (2011). https://doi.org/10.1146/annurev-phyto-072910-095258

    CAS  Article  Google Scholar 

  5. 5

    X. Li, J. Tambong, K. Yuan, et al., Int. J. Syst. Evol. Microbiol. 68, 234 (2018). https://doi.org/10.1099/ijsem.0.002492

    CAS  Article  Google Scholar 

  6. 6

    G. A. Secor, L. de Buhr, and N. C. Gudmestad, Plant Disease. 72, 585 (1988).

    CAS  Article  Google Scholar 

  7. 7

    J. M. van der Wolf, J. G. Elphinstone, D. E. Stead, et al., Plant Res. Report No. 95 (Plant Research Int. B. V. Wageningen, Wageningen, 2005). http://edepot.wur.nl/39352

  8. 8

    E. G. Potievskii and A. K. Novikov, Medical Aspects of Pectin Use (Meditsinskaya Kniga, Moscow, 2002) [in Russian].

    Google Scholar 

  9. 9

    L. G. Babeshina, Ya. V. Gorina, A. P. Kolokolova, et al., J. Sib. Fed. Univ., Chem. 4, 413 (2010).

    Google Scholar 

  10. 10

    A. V. Valyshev, Byull. Orenb. Nauch. Tsentra UrO RAN, No. 3, 1 (2013).

    Google Scholar 

  11. 11

    H. Shibata, I. KimuraTakagi, M. Nagaoka, et al., J. Nutr. Sci. Vitaminol. 45, 325 (1999).

    CAS  Article  Google Scholar 

  12. 12

    O. R. Akhedov, Sh. A. Shomurotov, G. G. Rakhanova, et al., Khim. Rastit. Syr’ya, No. 3, 19 (2016). https://doi.org/10.14258/jcprm.2016031092

  13. 13

    I. V. Babushkina, E. V. Gladkova, and D. M. Puchin’yan, Sovrem. Probl. Nauki Obrazov., No. 5, 33 (2016).

  14. 14

    L. M. Gavrikova, Vestn. Altaisk. Agrar. Univ., No. 6 (32), 29 (2007).

  15. 15

    A. M. Bulgakov and L. M. Gavrikova, Vestn. Altaisk. Agrar. Univ., No. 3 (29), 47 (2007).

  16. 16

    A. V. Papkina, A. I. Perfileva, M. A. Zhivet’yev, et al., Nanotechnol. Russ. 10, 484 (2015).

    CAS  Article  Google Scholar 

  17. 17

    I. A. Graskova, A. I. Perfileva, O. A. Nozhkina, et al., Khim. Rastit. Syr’ya, No. 3, 345 (2019). https://doi.org/10.14258/jcprm.2019034794

  18. 18

    O. A. Nozhkina, A. I. Perfileva, I. A. Graskova, A. V. Dyakova, V. N. Nurminsky, I. V. Klimenkov, T. V. Ganenko, T. N. Borodina, G. P. Aleksandrova, B. G. Sukhov, and B. A. Trofimov, Nanotechnol. Russ. 14, 255 (2019). https://doi.org/10.21517/1992-7223-2019-5-6-79-86

    CAS  Article  Google Scholar 

  19. 19

    A. I. Perfileva, O. A. Nozhkina, I. A. Graskova, A. V. Dyakova, A. G. Pavlova, G. P. Aleksandrova, I. V. Klimenkov, B. G. Sukhov, and B. A. Trofimov, Dokl. Biol. Sci. 489, 184 (2019). https://doi.org/10.31857/S0869-56524893325-330

    CAS  Article  Google Scholar 

  20. 20

    A. I. Perfileva, O. A. Nozhkina, I. A. Graskova, A. V. Sidorov, M. V. Lesnichaya, G. P. Aleksandrova, G. Dolmaa, I. V. Klimenkov, and B. G. Sukhov, Russ. Chem. Bull. 67, 157 (2018). https://doi.org/10.31255/978-5-94797-319-8-626-629

    CAS  Article  Google Scholar 

  21. 21

    A. S. Romanenko, A. A. Riffel, I. A. Graskova, et al., J. Phytopathol. 147, 679 (1999). https://doi.org/10.1046/j.1439-0434.1999.00450.x

    CAS  Article  Google Scholar 

  22. 22

    N. J. M. Roozen and J. W. L. van Vuurde, Netherlands J. Plant Pathol. 97, 321 (1991).

    Article  Google Scholar 

  23. 23

    I. A. Shaginyan, G. A. Danilina, M. Yu. Chernukha, et al., Zh. Mikrobiol. Epidemiol. Immunobiol., No. 1, 3 (2007).

  24. 24

    A. N. Boyarkin, Biokhimiya 16, 352 (1951).

    CAS  Google Scholar 

  25. 25

    Yu. A. Vladimirov and A. I. Archakov, Lipid Peroxidation in Biological Membranes (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  26. 26

    Y. Huang, Z. Bie, Z. Liu, et al., Soil Sci. Plant Nutrit. 55, 698 (2009).

    CAS  Google Scholar 

  27. 27

    B. G. Furtana and R. Tipirdamaz, Turk. J. Biol. 34, 287 (2010).

    Google Scholar 

  28. 28

    E. N. Oleshuk, A. N. Grits, E. G. Popov, et al., Proc. Natl. Acad. Sci. Belarus, Biol. Ser., No. 4, 33 (2016).

  29. 29

    Yu. E. Kolupaev and Yu. V. Karpets, Reactive Oxygen Species, Antioxidants and Plant Resistance to Stressors (Logos, Kiev, 2019) [in Russian].

    Google Scholar 

  30. 30

    S. I. Zandalinas and R. Mittler, Free Radic. Biol. Med. 122, 21 (2018). https://doi.org/10.1016/j.freeradbiomed.2017.11.028

    CAS  Article  Google Scholar 

  31. 31

    S. K. Kohli, K. Khanna, and R. Bhardwaj, Antioxidants (Basel) 12 (8), 12 (2019). https://doi.org/10.3390/antiox8120641El

    Article  Google Scholar 

  32. 32

    L. N. Kurganova, Soros. Obrazov. Zh., No. 6, 76 (2001).

  33. 33

    A. S. Petukhov, N. A. Khritokhin, and G. A. Petukhova, Vestn. RUDN, Ser. Ekol. Bezopasn. Zhiznedeyat. 26 (1), 82 (2018). https://doi.org/10.22363/2313-2310-2018-26-1-82-90

    Article  Google Scholar 

  34. 34

    A. F. Mehdawi, E. A. H. Pilon-Smits, Plant Biol. 14, 1 (2012). https://doi.org/10.1111/j.1438-8677.2011.00535.x

    CAS  Article  Google Scholar 

  35. 35

    C. K. Bempah, A. Donkor, P. O. Yeboah, et al., Food Chem. 128, 1058 (2011).

    CAS  Article  Google Scholar 

  36. 36

    M. Hijosa-Valsero, E. Bécares, C. Fernández-Aláez, et al., Sci. Total Environ. 544, 797 (2016).

    CAS  Article  Google Scholar 

  37. 37

    A. Ukalska-Jaruga, B. Smreczak, and G. Siebielec, Molecules 29 (3), 25 (2020). https://doi.org/10.3390/molecules25030587

    CAS  Article  Google Scholar 

  38. 38

    F. Zhang, J. He, Y. Yao, et al., Environ. Monit. Assess. 185, 6893 (2013). https://doi.org/10.1007/s10661-013-3073-y

    CAS  Article  Google Scholar 

  39. 39

    M. Baćmaga, J. Wyszkowska, and J. Kucharski, Ecotoxicol. 27, 1188 (2018). https://doi.org/10.1007/s10646-018-1968-7

    CAS  Article  Google Scholar 

  40. 40

    E. A. Ivantsova, Vestn. Volgogr. Univ., Ser. 11: Estestv. Nauki, No. 1 (5), 35 (2013).

    Google Scholar 

  41. 41

    M. Schiavon and E. A. H. Pilon-Smits, New Phytolog. 213, 1582 (2017). https://doi.org/10.1111/nph.14378

    CAS  Article  Google Scholar 

  42. 42

    X. Chen, S. He, X. Liu, et al., Ecotoxicol. Environ. Safety 159, 190–197 (2018). https://doi.org/10.1016/j.ecoenv.2018.04.047

    CAS  Article  Google Scholar 

  43. 43

    A. A. Adegoke, T. Mvuyo, and A. I. Okoh, J. Basic Microbiol. 52, 620 (2012). https://doi.org/10.1002/jobm.201100323

    CAS  Article  Google Scholar 

  44. 44

    C. C. de Carvalho and M. M. da Fonseca, Appl. Microbiol. Biotechnol. 67, 715 (2005). https://doi.org/10.1007/s00253-005-1932-3

    CAS  Article  Google Scholar 

  45. 45

    M. S. Tret’yakova, L. A. Belovezhets, Yu. A. Markova, et al., Agrokhimiya, No. 12, 46 (2017).

    Google Scholar 

  46. 46

    M. S. Tretyakova, M. V. Ivanova, L. A. Belovezhets, and Yu. A. Markova, IOP Conf. Ser. Earth Environ. Sci. 315, 1 (2019).

  47. 47

    S. S. Murodova and K. D. Davranov, Microbiol. Biotechnol., No. 4, 61 (2015).

Download references

ACKNOWLEDGMENTS

The study was carried out using the collections of the Center for Collective Use “Bioresource Center” of the Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences; the Center for Collective Use “Ultramicroanalysis” of the Limnological Institute, Siberian Branch, Russian Academy of Sciences (http://www.lin.irk.ru/copp/rus/); and the material and technical base of the Baikal Analytical Center for Collective Use.

Funding

This study was carried out with the partial financial support for young PhD scientists by the President of the Russian Federation (grant no. MK-1220.2019.11), project AAAA-A19-119022690046-4.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. I. Perfileva.

Additional information

Translated by D. Novikova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perfileva, A.I., Nozhkina, O.A., Tretyakova, M.S. et al. Biological Activity and Environmental Safety of Selenium Nanoparticles Encapsulated in Starch Macromolecules. Nanotechnol Russia 15, 96–104 (2020). https://doi.org/10.1134/S1995078020010152

Download citation