Abstract
The nanofibers produced by electrospinning from a solution of a high-molecular copolymer of acrylonitrile with methyl methacrylate and itaconic acid are studied as electrically conducting material, which is applicable for the fabrication of biofuel cells (BFCs). In order to increase electrical conductivity, they are successively exposed to oxidative thermal stabilization in air and high-temperature vacuum treatment at 1500 and 2300–2550°C. The structure of the materials is studied using various techniques including IR and Raman spectroscopy. As a result of the studies, the conditions of heat treatment that produce fiber materials with an acceptable defect level and sufficient electrical conductivity for microbial BFCs are determined.
This is a preview of subscription content, access via your institution.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.








REFERENCES
- 1
M. C. Potter, Proc. R. Soc. London, Ser. B 84, 260 (1911). https://doi.org/10.1098/rspb.1911.0073
- 2
A. N. Reshetilov, Y. V. Plekhanova, S. E. Tarasov, et al., Appl. Biochem. Microbiol. 53, 123 (2017). https://doi.org/10.1134/S0003683817010161
- 3
B. Zhang, F. Kang, J. M. Tarascon, and J. K. Kim, Prog. Mater Sci. 76, 319 (2016). https://doi.org/10.1016/j.pmatsci.2015.08.002
- 4
H. O. Pierson, Handbook of Carbon, Graphite, Diamond, and Fullerenes: Properties,Processing, and Applications (Noyes, New Mexico, 1993), p. 419.
- 5
O. N. Shornikova, E. V. Kogan, N. E. Sorokina, and V. V. Avdeev, Russ. J. Phys. Chem. A 83, 1022 (2009). https://doi.org/10.1134/S0036024409060260
- 6
C. E. Ford, Corrosion 2, 219 (1946). https://doi.org/10.5006/0010-9312-2.4.219
- 7
http://www.northerngraphite.com/about-graphite/graphite-pricing/.
- 8
A. S. Raymond, Principles of Physics, 2nd ed. (Saunders College, Fort Worth, TX, London, 1998), p. 954.
- 9
Ch. Kim, K. S. Yang, M. Kojima, et al., Adv. Funct. Mater. 16, 2393 (2006). https://doi.org/10.1002/adfm.200500911
- 10
Zh. Zhou, Ch. Lai, L. Zhang, et al., Polymer 50, 2999 (2009). https://doi.org/10.1016/j.polymer.2009.04.058
- 11
Q. Fan, Ch. Ma, L. Wu, et al., RSC Adv., 6419 (2019). https://doi.org/10.1039/C8RA07587E
- 12
M. Zhia, S. Liua, Zh. Honga, and N. Wu, J. Power Sources, 382 (2005). https://doi.org/10.1039/C4RA05512H
- 13
- 14
- 15
J. Liu, R. Wang, L. Cui, et al., J. Phys. Chem. C 116, 17939 (2012). https://doi.org/10.1021/jp304374r
- 16
Ch. Yin, Ch. Tao, F. Cai, et al., Carbon 109, 558 (2016). https://doi.org/10.1016/j.carbon.2016.08.053
- 17
https://www.sigmaaldrich.com/catalog/product/aldrich/900561?lang=en®ion=RU.
- 18
P. M. Gotovtsev and A. V. Dyakov, “Biotechnology and Internet of things for green smart city application,” in Proceedings of the IEEE 3rd World Forum Internet Things (IEEE, 2016), p. 542. https://doi.org/10.1109/WF-IoT.2016.7845476
- 19
A. Somov, P. Gotovtsev, A. Dyakov, et al., “Bacteria to power the smart sensor applications: Biofuel cell for low-power IoT devices,” in Proceedings of the IEEE 4th World Forum Internet Things (IEEE, 2018), p. 802. https://doi.org/10.1109/WF-IoT.2018.8355172
- 20
I. Gergin, Beilstein J. Nanotechnol. 8, 1616 (2017). https://doi.org/10.3762/bjnano.8.161
- 21
Sh. Liu, RSC Adv. 5, 37669 (2015). https://doi.org/10.1039/C5RA00476D
- 22
Q. Ouyang, L. Cheng, H. Wang, and K. Li, Polym. Degrad. Stab. 93, 1415 (2008). https://doi.org/10.1016/j.polymdegradstab.2008.05.021
- 23
L. A. Beltz and R. R. Gustafson, Carbon 34, 561 (1996). https://doi.org/10.1016/0008-6223(96)00005-X
- 24
G. L. Collins, N. W. Thomas, and G. E. Williams, Carbon. 26, 671 (1988). https://doi.org/10.1016/0008-6223(88)90070-X
- 25
Y. Xue, J. Liu, and J. Liang, Polym. Degrad. Stab. 98, 219 (2013). https://doi.org/10.1016/j.polymdegradstab.2012.10.018
- 26
M. Wu, Q. Wang, K. Lia, et al., Polym. Degrad. Stab. 97, 1511 (2012). https://doi.org/10.1016/j.polymdegradstab.2012.05.001
- 27
W. Zhang, Y. Wang, and Ch. Sun, J. Polym. Res. 14, 467 (2007). https://doi.org/10.1007/s10965-007-9130-x
- 28
E. V. Loginova, I. V. Mikheev, D. S. Volkov, and M. A. Proskurnin, Anal. Methods 8, 371 (2016). https://doi.org/10.1039/c5ay02264a
- 29
K. E. Perepelkin, Reinforcing Fibers and Fibrous Polymer Composites (NOT, Moscow, 2009) [in Russian].
- 30
Y. Liu, H. G. Chae, and S. Kumar, Carbon 49, 4466 (2011). https://doi.org/10.1016/j.carbon.2011.06.043
- 31
E. Cipriani, M. Zanetti, P. Bracco, et al., Polym. Degrad. Stab. 123, 178 (2016). https://doi.org/10.1016/j.polymdegradstab.2015.11.008
- 32
J. Zhao, J. Zhang, T. Zhou, et al., RSC Adv. 6, 4397 (2016). https://doi.org/10.1039/C5RA24320C
- 33
N. U. Nguyen-Thai and S. Ch. Hong, Macromolecules 46, 5882 (2013). https://doi.org/10.1021/ma401003g
- 34
P. H. Wang, Z. R. Yue, R. Y. Li, and J. Liu, J. Appl. Polym. Sci. 56, 289 (1995). https://doi.org/10.1002/app.1995.070560221
- 35
T.-H. Ko, J. Appl. Polym. Sci. 59, 577 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960124)59:4<577::AID-APP2>3.0.CO;2-Q
- 36
F. Liu, H. Wang, and L. Xue, J. Mater. Sci. 43, 4316 (2008). https://doi.org/10.1007/s10853-008-2633-y
- 37
Y. V. Plekhanova, S. E. Tarasov, A. G. Bykov, et al., Nanotechnol. Russ. 13, 531 (2018). https://doi.org/10.1134/S1995078018050117
Funding
The study was carried out using the equipment of the resource centers of the Research Center at Kurchatov Institute and was supported by a state grant supporting young scientists issued by the President of the Russian Federation (project МK-6700.2018.3).
Author information
Affiliations
Corresponding author
Additional information
Translated by A. Muravev
Rights and permissions
About this article
Cite this article
Tenchurin, T.K., Dmitryakov, P.V., Kamyshinsky, R.A. et al. Carbon Nanofiber Material Based on the AN–MA–IA Copolymer for a Biofuel Cell Electrode. Nanotechnol Russia 15, 55–62 (2020). https://doi.org/10.1134/S1995078020010097
Received:
Revised:
Accepted:
Published:
Issue Date: