Carbon Nanofiber Material Based on the AN–MA–IA Copolymer for a Biofuel Cell Electrode

Abstract

The nanofibers produced by electrospinning from a solution of a high-molecular copolymer of acrylonitrile with methyl methacrylate and itaconic acid are studied as electrically conducting material, which is applicable for the fabrication of biofuel cells (BFCs). In order to increase electrical conductivity, they are successively exposed to oxidative thermal stabilization in air and high-temperature vacuum treatment at 1500 and 2300–2550°C. The structure of the materials is studied using various techniques including IR and Raman spectroscopy. As a result of the studies, the conditions of heat treatment that produce fiber materials with an acceptable defect level and sufficient electrical conductivity for microbial BFCs are determined.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. 1

    M. C. Potter, Proc. R. Soc. London, Ser. B 84, 260 (1911). https://doi.org/10.1098/rspb.1911.0073

    Article  Google Scholar 

  2. 2

    A. N. Reshetilov, Y. V. Plekhanova, S. E. Tarasov, et al., Appl. Biochem. Microbiol. 53, 123 (2017). https://doi.org/10.1134/S0003683817010161

    CAS  Article  Google Scholar 

  3. 3

    B. Zhang, F. Kang, J. M. Tarascon, and J. K. Kim, Prog. Mater Sci. 76, 319 (2016). https://doi.org/10.1016/j.pmatsci.2015.08.002

    CAS  Article  Google Scholar 

  4. 4

    H. O. Pierson, Handbook of Carbon, Graphite, Diamond, and Fullerenes: Properties,Processing, and Applications (Noyes, New Mexico, 1993), p. 419.

    Google Scholar 

  5. 5

    O. N. Shornikova, E. V. Kogan, N. E. Sorokina, and V. V. Avdeev, Russ. J. Phys. Chem. A 83, 1022 (2009). https://doi.org/10.1134/S0036024409060260

    CAS  Article  Google Scholar 

  6. 6

    C. E. Ford, Corrosion 2, 219 (1946). https://doi.org/10.5006/0010-9312-2.4.219

    Article  Google Scholar 

  7. 7

    http://www.northerngraphite.com/about-graphite/graphite-pricing/.

  8. 8

    A. S. Raymond, Principles of Physics, 2nd ed. (Saunders College, Fort Worth, TX, London, 1998), p. 954.

    Google Scholar 

  9. 9

    Ch. Kim, K. S. Yang, M. Kojima, et al., Adv. Funct. Mater. 16, 2393 (2006). https://doi.org/10.1002/adfm.200500911

    CAS  Article  Google Scholar 

  10. 10

    Zh. Zhou, Ch. Lai, L. Zhang, et al., Polymer 50, 2999 (2009). https://doi.org/10.1016/j.polymer.2009.04.058

    CAS  Article  Google Scholar 

  11. 11

    Q. Fan, Ch. Ma, L. Wu, et al., RSC Adv., 6419 (2019). https://doi.org/10.1039/C8RA07587E

  12. 12

    M. Zhia, S. Liua, Zh. Honga, and N. Wu, J. Power Sources, 382 (2005). https://doi.org/10.1039/C4RA05512H

  13. 13

    http://zoltek.com.

  14. 14

    https://www.sigmaaldrich.com/technical-documents/articles/materials-science/single-double-multi-walled-carbon-nanotubes.html.

  15. 15

    J. Liu, R. Wang, L. Cui, et al., J. Phys. Chem. C 116, 17939 (2012). https://doi.org/10.1021/jp304374r

    CAS  Article  Google Scholar 

  16. 16

    Ch. Yin, Ch. Tao, F. Cai, et al., Carbon 109, 558 (2016). https://doi.org/10.1016/j.carbon.2016.08.053

    CAS  Article  Google Scholar 

  17. 17

    https://www.sigmaaldrich.com/catalog/product/aldrich/900561?lang=en&region=RU.

  18. 18

    P. M. Gotovtsev and A. V. Dyakov, “Biotechnology and Internet of things for green smart city application,” in Proceedings of the IEEE 3rd World Forum Internet Things (IEEE, 2016), p. 542. https://doi.org/10.1109/WF-IoT.2016.7845476

  19. 19

    A. Somov, P. Gotovtsev, A. Dyakov, et al., “Bacteria to power the smart sensor applications: Biofuel cell for low-power IoT devices,” in Proceedings of the IEEE 4th World Forum Internet Things (IEEE, 2018), p. 802. https://doi.org/10.1109/WF-IoT.2018.8355172

  20. 20

    I. Gergin, Beilstein J. Nanotechnol. 8, 1616 (2017).  https://doi.org/10.3762/bjnano.8.161

    CAS  Article  Google Scholar 

  21. 21

    Sh. Liu, RSC Adv. 5, 37669 (2015). https://doi.org/10.1039/C5RA00476D

  22. 22

    Q. Ouyang, L. Cheng, H. Wang, and K. Li, Polym. Degrad. Stab. 93, 1415 (2008). https://doi.org/10.1016/j.polymdegradstab.2008.05.021

    CAS  Article  Google Scholar 

  23. 23

    L. A. Beltz and R. R. Gustafson, Carbon 34, 561 (1996). https://doi.org/10.1016/0008-6223(96)00005-X

    CAS  Article  Google Scholar 

  24. 24

    G. L. Collins, N. W. Thomas, and G. E. Williams, Carbon. 26, 671 (1988). https://doi.org/10.1016/0008-6223(88)90070-X

    CAS  Article  Google Scholar 

  25. 25

    Y. Xue, J. Liu, and J. Liang, Polym. Degrad. Stab. 98, 219 (2013). https://doi.org/10.1016/j.polymdegradstab.2012.10.018

    CAS  Article  Google Scholar 

  26. 26

    M. Wu, Q. Wang, K. Lia, et al., Polym. Degrad. Stab. 97, 1511 (2012). https://doi.org/10.1016/j.polymdegradstab.2012.05.001

    CAS  Article  Google Scholar 

  27. 27

    W. Zhang, Y. Wang, and Ch. Sun, J. Polym. Res. 14, 467 (2007). https://doi.org/10.1007/s10965-007-9130-x

    CAS  Article  Google Scholar 

  28. 28

    E. V. Loginova, I. V. Mikheev, D. S. Volkov, and M. A. Proskurnin, Anal. Methods 8, 371 (2016). https://doi.org/10.1039/c5ay02264a

    CAS  Article  Google Scholar 

  29. 29

    K. E. Perepelkin, Reinforcing Fibers and Fibrous Polymer Composites (NOT, Moscow, 2009) [in Russian].

    Google Scholar 

  30. 30

    Y. Liu, H. G. Chae, and S. Kumar, Carbon 49, 4466 (2011). https://doi.org/10.1016/j.carbon.2011.06.043

    CAS  Article  Google Scholar 

  31. 31

    E. Cipriani, M. Zanetti, P. Bracco, et al., Polym. Degrad. Stab. 123, 178 (2016). https://doi.org/10.1016/j.polymdegradstab.2015.11.008

    CAS  Article  Google Scholar 

  32. 32

    J. Zhao, J. Zhang, T. Zhou, et al., RSC Adv. 6, 4397 (2016). https://doi.org/10.1039/C5RA24320C

    CAS  Article  Google Scholar 

  33. 33

    N. U. Nguyen-Thai and S. Ch. Hong, Macromolecules 46, 5882 (2013). https://doi.org/10.1021/ma401003g

    CAS  Article  Google Scholar 

  34. 34

    P. H. Wang, Z. R. Yue, R. Y. Li, and J. Liu, J. Appl. Polym. Sci. 56, 289 (1995). https://doi.org/10.1002/app.1995.070560221

    CAS  Article  Google Scholar 

  35. 35

    T.-H. Ko, J. Appl. Polym. Sci. 59, 577 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960124)59:4<577::AID-APP2>3.0.CO;2-Q

    CAS  Article  Google Scholar 

  36. 36

    F. Liu, H. Wang, and L. Xue, J. Mater. Sci. 43, 4316 (2008). https://doi.org/10.1007/s10853-008-2633-y

    CAS  Article  Google Scholar 

  37. 37

    Y. V. Plekhanova, S. E. Tarasov, A. G. Bykov, et al., Nanotechnol. Russ. 13, 531 (2018). https://doi.org/10.1134/S1995078018050117

    CAS  Article  Google Scholar 

Download references

Funding

The study was carried out using the equipment of the resource centers of the Research Center at Kurchatov Institute and was supported by a state grant supporting young scientists issued by the President of the Russian Federation (project МK-6700.2018.3).

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Kh. Tenchurin.

Additional information

Translated by A. Muravev

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tenchurin, T.K., Dmitryakov, P.V., Kamyshinsky, R.A. et al. Carbon Nanofiber Material Based on the AN–MA–IA Copolymer for a Biofuel Cell Electrode. Nanotechnol Russia 15, 55–62 (2020). https://doi.org/10.1134/S1995078020010097

Download citation