Biocomputers: Problems They Solve, State of the Art, and Prospects

Abstract

The review considers the approaches used to construct biocomputers, which are computational systems based on biological components. We focus on the approaches that utilize DNA molecules and those that utilize living cells. Each approach is analyzed, and its advantages and drawbacks are considered. Several factors substantially limit the progress in the field. First, there is still no distinct set of particular computational problems that demonstrate a substantial superiority of a biocomputer over modern conventional computational systems. The second basic problem is that computations are slow, being limited by the rates of biochemical reactions. Several interesting features are known for DNA computers, warranting their further research and development.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    Z. Chen, R. D. Kibler, A. Hunt, et al., Science (Washington, DC, U. S.) 84, 78 (2020). https://doi.org/10.1126/science.aay2790

    CAS  Article  Google Scholar 

  2. 2

    E. Katz, Chem. Phys. Chem. 20, 9 (2019). https://doi.org/10.1002/cphc.201800900

    CAS  Article  Google Scholar 

  3. 3

    L. Qian and E. Winfree, Science (Washington, DC, U. S.) 332 (6034), 1196 (2011). https://doi.org/10.1126/science.1200520

    CAS  Article  Google Scholar 

  4. 4

    A. Regev and E. Shapiro, Nature (London, U.K.) 419, 343 (2002).

    CAS  Article  Google Scholar 

  5. 5

    E. Katz, Curr. Opin. Biotechnol. 34, 202 (2015).

    CAS  Article  Google Scholar 

  6. 6

    D. Faulhammer, A. R. Cukras, R. J. Lipton, and L. F. Landweber, Proc. Natl. Acad. Sci. U. S. A. 97, 1385 (2000). https://doi.org/10.1073/pnas.97.4.1385

    CAS  Article  Google Scholar 

  7. 7

    L. Castelli, R. Pesenti, and D. Segr, IEEE Life Sci. Lett. 20 (99), 0–3 (2016). https://doi.org/10.1109/LLS.2016.2644648

  8. 8

    M. L. Simpson, G. S. Sayler, J. T. Fleming, and B. Applegate, Trends Biotechnol. 19, 317 (2001).

    CAS  Article  Google Scholar 

  9. 9

    K. Yehl and T. Lu, Curr. Opin. Biomed. Eng. 4, 143 (2017).

    Article  Google Scholar 

  10. 10

    Z. N. Oltvai and A.-L. Barabási, Science (Washington, DC, U. S.) 298, 763 (2002). https://doi.org/10.1126/science.1078563

    CAS  Article  Google Scholar 

  11. 11

    H. Kitano, Science (Washington, DC, U.S.) 295, 1662 (2002).

    CAS  Article  Google Scholar 

  12. 12

    H. V. Westerhoff, C. Winder, and H. Messiha, FEBS Lett. 583, 3882 (2009). https://doi.org/10.1016/j.febslet.2009.11.018

    CAS  Article  Google Scholar 

  13. 13

    L. H. Hartwell, J. J. Hopfield, S. Leibler, and A. W. Murray, Nature (London, U.K.) 402, S47 (1999). https://doi.org/10.1038/35011540

    CAS  Article  Google Scholar 

  14. 14

    M. Kovalchuk, Nanotechnol. Russ. 6, 1 (2011). https://doi.org/10.1134/S1995078011010149

    Article  Google Scholar 

  15. 15

    P. M. Gotovtsev and I. A. Konova, in Proceedings of the 2019 International Conference on Sensing and Instrumentation in IoT Era (ISSI) (IEEE, 2019), p. 1. https://doi.org/10.1109/ISSI47111.2019.9043737

  16. 16

    A. M. Turing, Mind. 59, 433 (1950).

    Article  Google Scholar 

  17. 17

    A. W. Senior, R. Evans, J. Jumper, et al., Nature (London, U.K.) 577, 706 (2020). https://doi.org/10.1038/s41586-019-1923-7

    CAS  Article  Google Scholar 

  18. 18

    A. Alessandrini, M. Salerno, S. Frabboni, and P. Facci, Appl. Phys. Lett. 86 (13), 1 (2005). https://doi.org/10.1063/1.1896087

    CAS  Article  Google Scholar 

  19. 19

    A. P. de Silva and S. Uchiyama, Nat. Nanotechnol. 2, 399 (2007).

    CAS  Article  Google Scholar 

  20. 20

    R. Sarpeshkar, Philos. Trans., A 372, 20130110 (2014).https://doi.org/10.1098/rsta.2013.0110

  21. 21

    Y. S. Chen, M. Y. Hong, and G. S. Huang, Nat. Nano-technol. 7 (3), 197 (2012). https://doi.org/10.1038/nnano.2012.7

    CAS  Article  Google Scholar 

  22. 22

    Y. Benenson, T. Paz-Elizur, R. Adar, et al., Nature (London, U.K.) 414 (6862), 430 (2001). https://doi.org/10.1038/35106533

    CAS  Article  Google Scholar 

  23. 23

    M. S. Livstone, D. van Noort, and L. F. Landweber, Trends Biotechnol. 21, 98 (2003).

    CAS  Article  Google Scholar 

  24. 24

    R. J. Lipton, Science (Washington, DC, U. S.) 268 (5210), 542 (1995). https://doi.org/10.1126/science.7725098

    CAS  Article  Google Scholar 

  25. 25

    L. M. Adleman, Science (Washington, DC, U. S.) 266 (5187), 1021 (1994). https://doi.org/10.1126/science.7973651

    CAS  Article  Google Scholar 

  26. 26

    Y. Benenson, R. Adar, T. Paz-Elizur, et al., Proc. Natl. Acad. Sci. U. S. A. 100, 2191 (2003). https://doi.org/10.1073/pnas.0535624100

    CAS  Article  Google Scholar 

  27. 27

    R. Adar, Y. Benenson, G. Linshiz, et al., Proc. Natl. Acad. Sci. U. S. A. 101, 9960 (2004). https://doi.org/10.1073/pnas.0400731101

    CAS  Article  Google Scholar 

  28. 28

    J. Shendure, S. Balasubramanian, G. M. Church, et al., Nature (London, U.K.) 550 (7676), 345 (2017). https://doi.org/10.1038/nature24286

    CAS  Article  Google Scholar 

  29. 29

    N. Kono and K. Arakawa, Developm., Growth Differ. 61, 316 (2019). https://doi.org/10.1111/dgd.12608

    Article  Google Scholar 

  30. 30

    P. Cull, Bio Syst. 112, 196 (2013). https://doi.org/10.1016/j.biosystems.2012.12.005

    Article  Google Scholar 

  31. 31

    C. Zhou, H. Geng, P. Wang, and C. Guo, Small 15, 1903489 (2019). https://doi.org/10.1002/smll.201903489

    CAS  Article  Google Scholar 

  32. 32

    A. Currin, K. Korovin, M. Ababi, et al., J. R. Soc. Interface 14, 20160990 (2017). https://doi.org/10.1098/rsif.2016.0990

    CAS  Article  Google Scholar 

  33. 33

    R. McNaughton, P. Narendran, and F. Otto, J. ACM 35, 324 (1988). https://doi.org/10.1145/42282.42284

    Article  Google Scholar 

  34. 34

    N. Chomsky, IRE Trans. Inform. Theory 2 (3), 113 (1956). https://doi.org/10.1109/TIT.1956.1056813

    Article  Google Scholar 

  35. 35

    W. Maass, Trans. Am. Math. Soc. 292, 675 (1985). https://doi.org/10.1090/s0002-9947-1985-0808746-4

    Article  Google Scholar 

  36. 36

    Z. Galil, R. Kannan, and E. Szemeredi, J. ACM, 39 (1986).

  37. 37

    K. S. Boles, K. Kannan, J. Gill, et al., Nat. Biotechnol. 35, 672 (2017). https://doi.org/10.1038/nbt.3859

    CAS  Article  Google Scholar 

  38. 38

    T. Jakočiūnas, M. K. Jensen, and J. D. Keasling, Metab. Eng. 34, 44 (2015). https://doi.org/10.1016/j.ymben.2015.12.003

    CAS  Article  Google Scholar 

  39. 39

    A. V. Anzalone, P. B. Randolph, J. R. Davis, et al., Nature (London, U.K.) 576 (7785), 149 (2019). https://doi.org/10.1038/s41586-019-1711-4

    CAS  Article  Google Scholar 

  40. 40

    A. J. Simon, S. D’Oelsnitz, and A. D. Ellington, Nat. Biotechnol. 37, 730 (2019). https://doi.org/10.1038/s41587-019-0157-4

    CAS  Article  Google Scholar 

  41. 41

    T. Wei, M. Li, Y. Y. Zhang, et al., Nucl. Sci. Technol. 28, 35 (2017). https://doi.org/10.1007/s41365-017-0191-1

    Article  Google Scholar 

  42. 42

    N. C. Seeman and H. F. Sleiman, Nat. Rev. Mater. 3, 1 (2017). https://doi.org/10.1038/natrevmats.2017.68

    CAS  Article  Google Scholar 

  43. 43

    R. Daniel, J. R. Rubens, R. Sarpeshkar, and T. K. Lu, Nature (London, U.K.) 497, 619 (2013). https://doi.org/10.1038/nature12148

    CAS  Article  Google Scholar 

  44. 44

    O. Atay, A. Doncic, and J. M. Skotheim, Cell Syst. 3, 121 (2016). https://doi.org/10.1016/j.cels.2016.06.010

    CAS  Article  Google Scholar 

  45. 45

    H. H. McAdams and L. Shapiro, Science (Washington, DC, U. S.) 269, 650 (1995). https://doi.org/10.1126/science.7624793

    CAS  Article  Google Scholar 

  46. 46

    D. A. Lauffenburger, Proc. Natl. Acad. Sci. 97, 5031 (2000). https://doi.org/10.1073/pnas.97.10.5031

    CAS  Article  Google Scholar 

  47. 47

    J. J. Collins, T. S. Gardner, and C. R. Cantor, Nature (London, U.K.) 403, 339 (2000). https://doi.org/10.1038/35002131

    CAS  Article  Google Scholar 

  48. 48

    P. Vaidyanathan, B. S. Der, S. Bhatia, et al., Proc. IEEE 103, 2196 (2015). https://doi.org/10.1109/JPROC.2015.2443832

    CAS  Article  Google Scholar 

  49. 49

    J. Shin, S. Zhang, B. S. Der, et al., Mol. Syst. Biol. 16 (3), 1 (2020). https://doi.org/10.15252/msb.20199401

    CAS  Article  Google Scholar 

  50. 50

    A. K. Nielsen, B. S. Der, J. Shin, et al., Science (Washington, DC, U. S.) 352, 53 (2016). https://doi.org/10.1126/science.aac7341

    CAS  Article  Google Scholar 

  51. 51

    L. B. Andrews, A. K. Nielsen, and C. A. Voigt, Science (Washington, DC, U. S.) 361, eaap8987 (2018). https://doi.org/10.1126/science.aap8987

  52. 52

    M. M. Hanczyc, Artif. Life, 1 (2020). https://doi.org/10.1162/artl_a_00318

  53. 53

    A. A. Green, J. Kim, D. Ma, et al., Nature (London, U.K.) 548, 117 (2017). https://doi.org/10.1038/nature23271

    CAS  Article  Google Scholar 

  54. 54

    A. Tamsir, J. J. Tabor, and C. A. Voigt, Nature (London, U.K.) 469, 212 (2011). https://doi.org/10.1038/nature09565

    CAS  Article  Google Scholar 

  55. 55

    K. Clancy and C. A. Voigt, Curr. Opin. Biotechnol. 21, 572 (2010). https://doi.org/10.1016/j.copbio.2010.07.005

    CAS  Article  Google Scholar 

  56. 56

    R. S. H. Smith, C. Bader, S. Sharma, et al., Adv. Funct. Mater. 30, 1907401 (2020). https://doi.org/10.1002/adfm.201907401

    CAS  Article  Google Scholar 

  57. 57

    F. Moser, E. Tham, L. M. González, et al., Adv. Funct. Mater., p. 1901788 (2019). https://doi.org/10.1002/adfm.201901788

  58. 58

    R. P. Shetty, D. Endy, and T. F. Knight, J. Biol. Eng. 2, 5 (2008). https://doi.org/10.1186/1754-1611-2-5

    CAS  Article  Google Scholar 

  59. 59

    R. Shetty, M. Lizarazo, R. Rettberg, and T. F. Knight, Methods Enzymol. 498, 311 (2011). https://doi.org/10.1016/B978-0-12-385120-8.00013-9

    CAS  Article  Google Scholar 

  60. 60

    H. Konig, D. Frank, R. Heil, and C. Coenen, Curr. Genomics 14, 11 (2013). https://doi.org/10.2174/1389202911314010003

    Article  Google Scholar 

  61. 61

    J. R. Karr, J. C. Sanghvi, D. N. MacKlin, et al., Cell 150, 389 (2012). https://doi.org/10.1016/j.cell.2012.05.044

    CAS  Article  Google Scholar 

  62. 62

    D. Mishra, P. M. Rivera, A. Lin, et al., Nat. Biotechnol. 32, 1268 (2014). https://doi.org/10.1038/nbt.3044

  63. 63

    D. del Vecchio, Trends Biotechnol. 33, 111 (2015). https://doi.org/10.1016/j.tibtech.2014.11.009

    CAS  Article  Google Scholar 

  64. 64

    J. Bonnet, P. Yin, M. E. Ortiz, P. Subsoontorn, and D. Endy, Science (Washington, DC, U. S.) 340, 599 (2013). https://doi.org/10.1126/science.1232758

    CAS  Article  Google Scholar 

  65. 65

    P. Wellstead, E. Bullinger, D. Kalamatianos, et al., Ann. Rev. Control. 32, 33 (2008). https://doi.org/10.1016/j.arcontrol.2008.02.001

    Article  Google Scholar 

  66. 66

    Y. Hori, T.-H. Kim, and S. Hara, Automatica 47, 1203 (2011). https://doi.org/10.1016/j.automatica.2011.02.042

    Article  Google Scholar 

  67. 67

    P. E. M. Purnick and R. Weiss, Nat. Rev. Mol. Cell. Biol. 10, 410 (2009). https://doi.org/10.1038/nrm2698

    CAS  Article  Google Scholar 

  68. 68

    C. A. Hutchison, R.-Y. Chuang, V. N. Noskov, et al., Science (Washington, DC, U. S.) 351, aad6253 (2016). https://doi.org/10.1126/science.aad6253

    CAS  Article  Google Scholar 

  69. 69

    I. Klapper and J. Dockery, SIAM Rev. 52 (2), 21 (2010). https://doi.org/10.1137/080739720

    Article  Google Scholar 

  70. 70

    K. Selvarajoo, Front. Microbiol. 9, 1721 (2018). https://doi.org/10.3389/fmicb.2018.01721

    Article  Google Scholar 

  71. 71

    B. Niu and H. Wang, Discrete Dyn. Nat. Soc., 698057 (2012). https://doi.org/10.1155/2012/698057

  72. 72

    H. Zhang, H. Wang, M. Jie, et al., Bioresour. Technol. 295, 122302 (2020). https://doi.org/10.1016/j.biortech.2019.122302

    CAS  Article  Google Scholar 

  73. 73

    P. M. Gotovtsev, E. Y. Yuzbasheva, K. V. Gorin, et al., Appl. Biochem. Microbiol. 51, 792 (2015). https://doi.org/10.1134/S0003683815080025

    CAS  Article  Google Scholar 

  74. 74

    K. Fang, O. J. Park, and S. H. Hong, Biotechnol. Adv. 40, 107518 (2020).

    CAS  Article  Google Scholar 

  75. 75

    Y. Jiang, P. Liang, P. Liu, et al., Biosens. Bioelectron. 94, 344 (2017). https://doi.org/10.1016/j.bios.2017.02.052

    CAS  Article  Google Scholar 

  76. 76

    B. E. Logan, Nat. Rev. Microbiol. 7, 375 (2009). https://doi.org/10.1038/nrmicro2113

    CAS  Article  Google Scholar 

  77. 77

    C. Santoro, C. Arbizzani, B. Erable, and I. Ieropoulos, J. Power Sources 356, 225 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.109

    CAS  Article  Google Scholar 

  78. 78

    K. Antipova, Y. Parunova, M. Vishnevskaya, et al., in Proceedings of the 12th International Conference on Developments in eSystems Engineering DeSE, 2019 (2019), p. 513. https://doi.org/10.1109/DeSE.2019.00099

  79. 79

    M. Vishnevskaya, D. Gazizova, A. Victorenko, and I. Konova, IOP Conf. Ser.: Earth Environ. Sci. (2019). https://doi.org/10.1088/1755-1315/337/1/012002

  80. 80

    A. N. Reshetilov, Y. V. Plekhanova, S. E. Tarasov, et al., Appl. Biochem. Microbiol. 53, 123 (2017). https://doi.org/10.1134/S0003683817010161

    CAS  Article  Google Scholar 

  81. 81

    T. Q. N. Do, M. Varničić, R. J. Flassig, et al., Bioelectrochem. 106, 3 (2015). https://doi.org/10.1016/j.bioelechem.2015.07.007

    CAS  Article  Google Scholar 

  82. 82

    L. Su, W. Jia, C. Hou, and Y. Lei, Biosens. Bioelectron. 26, 1788 (2011). https://doi.org/10.1016/J.BIOS.2010.09.005

    CAS  Article  Google Scholar 

  83. 83

    B. H. Arabi, in Proceedings of the 2016 UKSim-AMSS 18th International Conference on Computer Modelling and Simulation (Inst. Electr. Electron Eng. Inc., 2016), p. 43.

  84. 84

    M. Prates, P. H. C. Avelar, H. Lemos, et al., in Proceedings of the AAAI Conference on Artificial Intelligence (2019), Vol. 33, No. 01, p. 4731. https://doi.org/10.1609/aaai.v33i01.33014731

    Article  Google Scholar 

  85. 85

    T. D. Manjunath, S. Samarth, N. Prafulla, and J. S. Nayak, Hopfield Network Based Approximation Engine for NP Complete Problems (Springer, Cham, 2020), p. 319.

    Google Scholar 

  86. 86

    A. K. Kar, Expert Syst. Appl. 59, 20 (2016).

    Article  Google Scholar 

  87. 87

    C. K. H. Lee, Eng. Appl. Artif. Intell. 76, 1 (2018). https://doi.org/10.1016/j.engappai.2018.08.011

    Article  Google Scholar 

  88. 88

    A. P. Piotrowski, Swarm Evolut. Comput. 32, 1 (2017). https://doi.org/10.1016/j.swevo.2016.05.003

    Article  Google Scholar 

  89. 89

    E. Alba and M. Tomassini, IEEE Trans. Evolut. Comput. 6, 443 (2002). https://doi.org/10.1109/TEVC.2002.800880

    Article  Google Scholar 

  90. 90

    K. Michael and K. W. Miller, Computer 46 (6), 22 (2013). https://doi.org/10.1109/mc.2013.196

    Article  Google Scholar 

  91. 91

    B. K. Tannahill and M. Jamshidi, Comput. Electr. Eng. 40, 2 (2014). https://doi.org/10.1016/j.compeleceng.2013.11.016

    Article  Google Scholar 

  92. 92

    A. W. Harrow and A. Montanaro, Nature (London, U.K.) 549, 203 (2017).

    CAS  Article  Google Scholar 

  93. 93

    F. Arute, K. Arya, R. Babbush, et al., Nature (London, U.K.) 574, 505 (2019). https://doi.org/10.1038/s41586-019-1666-5

    CAS  Article  Google Scholar 

  94. 94

    M. Boyd-Moss, S. Baratchi, M. di Venere, and K. Khoshmanesh, Lab Chip. 16, 3177 (2016).

    CAS  Article  Google Scholar 

  95. 95

    Y. Zhang and H. R. Jiang, Anal. Chim. Acta 914, 7 (2016).

    CAS  Article  Google Scholar 

  96. 96

    B. Bruijns, van A. Asten, R. Tiggelaar, and H. Gardeniers, Biosensors 6, 41 (2016). https://doi.org/10.3390/bios6030041

    CAS  Article  Google Scholar 

  97. 97

    P. M. Gotovtsev and A. V. Dyakov, in Proceedings of the 2016 IEEE 3rd World Forum on Internet of Things WF-IoT (IEEE, 2016), p. 542. https://doi.org/10.1109/WF-IoT.2016.7845476

  98. 98

    H. J. Wagner, A. Sprenger, B. Rebmann, and W. Weber, Adv. Drug Deliv. Rev. 105, 77 (2016).

    CAS  Article  Google Scholar 

  99. 99

    B. Chen and Z. Dai, Quant. Biol. 8, 4 (2020). https://doi.org/10.1007/s40484-020-0197-2

  100. 100

    L. Scheller and M. Fussenegger, Curr. Opin. Biotechnol. 58, 108 (2019).

    CAS  Article  Google Scholar 

  101. 101

    T. Hoffman, P. Antovski, P. Tebon, et al., Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.201909882

Download references

ACKNOWLEDGMENTS

This work was supported by the Kurchatov Institute as part of the “Development of Technological Solutions to Design Bionic Implantable Sensory Devices and Metabolic Energy Converters” program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. M. Gotovtsev.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gotovtsev, P.M., Kirillova, D.A. & Vasilov, R.G. Biocomputers: Problems They Solve, State of the Art, and Prospects. Nanotechnol Russia 15, 3–12 (2020). https://doi.org/10.1134/S1995078020010036

Download citation