Skip to main content
Log in

SILVER NANOPARTICLE SYNTHESIS USING ULTRASOUND AND HALLOYSITE TO CREATE A NANOCOMPOSITE WITH ANTIBACTERIAL PROPERTIES

  • NANOSTRUCTURES, NANOTUBES
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract—The antibacterial nanocomposites creation is a current trend against microbial contamination and microorganism’s biofilm formation. Existing methods for producing nanocomposites based on silver nanoparticles are difficult, expensive, and not environment friendly; therefore it has become necessary to develop a new method for their synthesis that didn’t have these minus. The paper discusses the possibility of silver nanoparticles synthesizing and obtains a new nanocomposite using halloysite nanotubes and ultrasound. Transmission electron microscopy revealed the silver nanoparticles presence on the inner and outer surface of halloysite nanotubes, and sample mapping showed a uniform distribution of silver nanoparticles in the nanocomposite. The antibacterial activity of the obtained nanocomposite against the strain Serratia marcescens (S. marcescens) was more than twice higher than that of the control. The swarming motility method showed that the diameter of migration of S. marcescens was 2.05 ± 0.05 cm, and in the presence of the nanocomposite, it was 1.63 ± 0.04 cm, indicating the ability of the nanocomposite to inhibit biofilm formation in these bacteria. In the future, the obtained nanocomposite can be used as an additive to various materials or as a coating protecting against bacterial contamination of various surfaces and materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. N. Yu. Selivanov, O. G. Selivanova, O. I. Sokolov, M. K. Sokolova, A. O. Sokolov, V. A. Bogatyrev and L. A. Dykman, Nanotechnol. Russ. 12, 116 (2017).

    Article  CAS  Google Scholar 

  2. B. González-Penguelly, Á. D. J. Morales-Ramírez, M. G. Rodríguez-Rosales, et al., Mater. Sci. Eng. C 78, 833 (2017). https://doi.org/10.1016/j.msec.2017.03.274

    Article  CAS  Google Scholar 

  3. A. Borges, M. J. Saavedra, and M. Simões, Curr. Med. Chem. 22, 2590 (2015). https://doi.org/10.2174/0929867322666150530210522

    Article  CAS  Google Scholar 

  4. Y. M. Lu, Y. Wu, J. Liang, et al., Biomaterials 45, 64 (2015). https://doi.org/10.1016/j.biomaterials.2014.12.048

    Article  CAS  Google Scholar 

  5. J. K. Oh, X. Lu, Y. Min, et al., ACS Appl. Mater. Interfaces 7, 19274 (2015). https://doi.org/10.1021/acsami.5b05198

    Article  CAS  Google Scholar 

  6. B. L. Wang, T. Jin, Y. Han, et al., Int. J. Polym. Mater. Polym. Biomater. 65, 55 (2016). https://doi.org/10.1080/00914037.2015.1055631

    Article  CAS  Google Scholar 

  7. B. L. Wang, Y. Han, Q. Lin, et al., J. Mater. Chem. B 4, 1853 (2016). https://doi.org/10.1039/c5tb02046h

    Article  CAS  Google Scholar 

  8. S. M. Olsen, L. T. Pedersen, M. H. Laursen, et al., Biofouling 23, 369 (2007). https://doi.org/10.1080/08927010701566384

    Article  CAS  Google Scholar 

  9. A. L. Cordeiro and C. Werner, J. Adhes. Sci. Technol. 25, 2317 (2011). https://doi.org/10.1163/016942411X574961

    Article  CAS  Google Scholar 

  10. J. M. Peng, J. C. Lin, Z. Y. Chen, et al., Mater. Sci. Eng. C 71, 10 (2017). https://doi.org/10.1016/j.msec.2016.09.070

    Article  CAS  Google Scholar 

  11. P. A. Zapata, M. Larrea, L. Tamayo, et al., Mater. Sci. Eng. C 69, 1282 (2016). https://doi.org/10.1016/j.msec.2016.08.039

    Article  CAS  Google Scholar 

  12. B. Thati, A. Noble, R. Rowan, et al., Toxicol. Vitro 21, 801 (2007). https://doi.org/10.1016/j.tiv.2007.01.022

    Article  CAS  Google Scholar 

  13. E. Dayyoub, M. Frant, S. R. Pinnapireddy, et al., Int. J. Pharm. 531, 205 (2017). https://doi.org/10.1016/j.ijpharm.2017.08.072

    Article  CAS  Google Scholar 

  14. E. Abdullayev, K. Sakakibara, K. Okamoto, et al., ACS Appl. Mater. Interfaces 3 (10), 4040 (2011). https://doi.org/10.1021/am200896d

    Article  CAS  Google Scholar 

  15. Y. Lvov, W. Wang, L. Zhang, and R. Fakhrullin, Adv. Mater. 28, 1227 (2016). https://doi.org/10.1002/adma.20150234

    Article  CAS  Google Scholar 

  16. E. V. Rozhina, A. A. Danilushkina, E. A. Naumenko, et al., Geny Kletki 9 (3), 25 (2014).

    Google Scholar 

  17. R. F. Fakhrullin, A. Tursunbayeva, V. S. Portno, and Y. M. Lvov, Crystallogr. Rep. 59, 1107 (2014). https://doi.org/10.1134/S1063774514070104

    Article  CAS  Google Scholar 

  18. M. M. Saber, S. B. Mirtajani, and K. Karimzadeh, J. Drug Deliv. Sci. Technol. 47, 375 (2018). https://doi.org/10.1016/j.jddst.2018.08.004

    Article  CAS  Google Scholar 

  19. K. Venugopal, H. Ahmad, E. Manikandan, et al., J. Photochem. Photobiol. B 167, 282 (2017). https://doi.org/10.1016/j.jphotobiol.2016.12.013

    Article  CAS  Google Scholar 

  20. D. Prabhu, C. Arulvasu, G. Babu, et al., Proc. Biochem. Soc. 48, 317 (2013). https://doi.org/10.1016/j.procbio.2012.12.013

    Article  CAS  Google Scholar 

  21. N. V. Anoop, R. Jacob, J. M. Paulson, et al., J. Drug Deliv. Sci. Technol. 44, 8 (2018). https://doi.org/10.1016/j.jddst.2017.11.023

    Article  CAS  Google Scholar 

  22. S. S. Sana and L. K. Dogiparthi, Mater. Lett. 226, 47 (2018).https://doi.org/10.1016/j.matlet.2018.05.009

    Article  CAS  Google Scholar 

  23. I. V. Shipitsyna, E. V. Osipova, Klin. Labor. Diagn. 62, 188 (2017).

    CAS  Google Scholar 

  24. S. M. Yakoot and N. A. Salem, Int. J. Pharm. 12, 572 (2016). https://doi.org/10.3923/ijp.2016.572.575

    Article  CAS  Google Scholar 

  25. L. P. Jiang, S. Xu, J. M. Zhu, et al., Inorg. Chem. 43, 5877 (2004). https://doi.org/10.1021/ic049529d

    Article  CAS  Google Scholar 

  26. T. Ding, T. Li, Z. Wang, and J. Li, Sci. Rep. 7, 8612 (2017). https://doi.org/10.1038/s41598-017-08986-9

    Article  CAS  Google Scholar 

  27. I. A. S. V. Packiavathy, S. Priya, S. K. Pandian, and A. V. Ravi, Food Chem. 148, 453 (2014). https://doi.org/10.1016/j.foodchem.2012.08.002

    Article  CAS  Google Scholar 

  28. H. Fu, Y. Wang, X. Li, and W. Chen, Compos. Sci. Technol. 126, 86 (2016). https://doi.org/10.1016/j.compscitech.2016.02.018

    Article  CAS  Google Scholar 

  29. S. Jana, A. V. Kondakova, S. N. Shevchenko, et al., Colloids Surf., B 151, 249 (2017). https://doi.org/10.1016/j.colsurfb.2016.12.017

    Article  CAS  Google Scholar 

  30. Y. Zhang, Y. Chen, H. Zhang, et al., J. Inorg. Biochem. 118, 59 (2013). https://doi.org/10.1016/j.jinorgbio.2012.07.025

    Article  CAS  Google Scholar 

  31. D. Ravindran, S. Ramanathan, K. Arunachalam, et al., J. Appl. Microbiol. 124, 1425 (2018). https://doi.org/10.1111/jam.13728

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by a subsidy allocated within the framework of state support of Kazan (Volga) Federal University in order to increase its competitiveness among world leading scientific and educational centers, and by the Russian Foundation for Basic Research (project no. 18-29-25057 mk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. V. Cherednichenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherednichenko, Y.V., Evtugyn, V.G., Nigamatzyanova, L.R. et al. SILVER NANOPARTICLE SYNTHESIS USING ULTRASOUND AND HALLOYSITE TO CREATE A NANOCOMPOSITE WITH ANTIBACTERIAL PROPERTIES. Nanotechnol Russia 14, 456–461 (2019). https://doi.org/10.1134/S1995078019050021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078019050021

Navigation