Abstract—The antibacterial nanocomposites creation is a current trend against microbial contamination and microorganism’s biofilm formation. Existing methods for producing nanocomposites based on silver nanoparticles are difficult, expensive, and not environment friendly; therefore it has become necessary to develop a new method for their synthesis that didn’t have these minus. The paper discusses the possibility of silver nanoparticles synthesizing and obtains a new nanocomposite using halloysite nanotubes and ultrasound. Transmission electron microscopy revealed the silver nanoparticles presence on the inner and outer surface of halloysite nanotubes, and sample mapping showed a uniform distribution of silver nanoparticles in the nanocomposite. The antibacterial activity of the obtained nanocomposite against the strain Serratia marcescens (S. marcescens) was more than twice higher than that of the control. The swarming motility method showed that the diameter of migration of S. marcescens was 2.05 ± 0.05 cm, and in the presence of the nanocomposite, it was 1.63 ± 0.04 cm, indicating the ability of the nanocomposite to inhibit biofilm formation in these bacteria. In the future, the obtained nanocomposite can be used as an additive to various materials or as a coating protecting against bacterial contamination of various surfaces and materials.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1

    N. Yu. Selivanov, O. G. Selivanova, O. I. Sokolov, M. K. Sokolova, A. O. Sokolov, V. A. Bogatyrev and L. A. Dykman, Nanotechnol. Russ. 12, 116 (2017).

    CAS  Article  Google Scholar 

  2. 2

    B. González-Penguelly, Á. D. J. Morales-Ramírez, M. G. Rodríguez-Rosales, et al., Mater. Sci. Eng. C 78, 833 (2017).

    CAS  Article  Google Scholar 

  3. 3

    A. Borges, M. J. Saavedra, and M. Simões, Curr. Med. Chem. 22, 2590 (2015).

    CAS  Article  Google Scholar 

  4. 4

    Y. M. Lu, Y. Wu, J. Liang, et al., Biomaterials 45, 64 (2015).

    CAS  Article  Google Scholar 

  5. 5

    J. K. Oh, X. Lu, Y. Min, et al., ACS Appl. Mater. Interfaces 7, 19274 (2015).

    CAS  Article  Google Scholar 

  6. 6

    B. L. Wang, T. Jin, Y. Han, et al., Int. J. Polym. Mater. Polym. Biomater. 65, 55 (2016).

    CAS  Article  Google Scholar 

  7. 7

    B. L. Wang, Y. Han, Q. Lin, et al., J. Mater. Chem. B 4, 1853 (2016).

    CAS  Article  Google Scholar 

  8. 8

    S. M. Olsen, L. T. Pedersen, M. H. Laursen, et al., Biofouling 23, 369 (2007).

    CAS  Article  Google Scholar 

  9. 9

    A. L. Cordeiro and C. Werner, J. Adhes. Sci. Technol. 25, 2317 (2011).

    CAS  Article  Google Scholar 

  10. 10

    J. M. Peng, J. C. Lin, Z. Y. Chen, et al., Mater. Sci. Eng. C 71, 10 (2017).

    CAS  Article  Google Scholar 

  11. 11

    P. A. Zapata, M. Larrea, L. Tamayo, et al., Mater. Sci. Eng. C 69, 1282 (2016).

    CAS  Article  Google Scholar 

  12. 12

    B. Thati, A. Noble, R. Rowan, et al., Toxicol. Vitro 21, 801 (2007).

    CAS  Article  Google Scholar 

  13. 13

    E. Dayyoub, M. Frant, S. R. Pinnapireddy, et al., Int. J. Pharm. 531, 205 (2017).

    CAS  Article  Google Scholar 

  14. 14

    E. Abdullayev, K. Sakakibara, K. Okamoto, et al., ACS Appl. Mater. Interfaces 3 (10), 4040 (2011).

    CAS  Article  Google Scholar 

  15. 15

    Y. Lvov, W. Wang, L. Zhang, and R. Fakhrullin, Adv. Mater. 28, 1227 (2016).

    CAS  Article  Google Scholar 

  16. 16

    E. V. Rozhina, A. A. Danilushkina, E. A. Naumenko, et al., Geny Kletki 9 (3), 25 (2014).

    Google Scholar 

  17. 17

    R. F. Fakhrullin, A. Tursunbayeva, V. S. Portno, and Y. M. Lvov, Crystallogr. Rep. 59, 1107 (2014).

    CAS  Article  Google Scholar 

  18. 18

    M. M. Saber, S. B. Mirtajani, and K. Karimzadeh, J. Drug Deliv. Sci. Technol. 47, 375 (2018).

    CAS  Article  Google Scholar 

  19. 19

    K. Venugopal, H. Ahmad, E. Manikandan, et al., J. Photochem. Photobiol. B 167, 282 (2017).

    CAS  Article  Google Scholar 

  20. 20

    D. Prabhu, C. Arulvasu, G. Babu, et al., Proc. Biochem. Soc. 48, 317 (2013).

    CAS  Article  Google Scholar 

  21. 21

    N. V. Anoop, R. Jacob, J. M. Paulson, et al., J. Drug Deliv. Sci. Technol. 44, 8 (2018).

    CAS  Article  Google Scholar 

  22. 22

    S. S. Sana and L. K. Dogiparthi, Mater. Lett. 226, 47 (2018).

    CAS  Article  Google Scholar 

  23. 23

    I. V. Shipitsyna, E. V. Osipova, Klin. Labor. Diagn. 62, 188 (2017).

    CAS  Google Scholar 

  24. 24

    S. M. Yakoot and N. A. Salem, Int. J. Pharm. 12, 572 (2016).

    CAS  Article  Google Scholar 

  25. 25

    L. P. Jiang, S. Xu, J. M. Zhu, et al., Inorg. Chem. 43, 5877 (2004).

    CAS  Article  Google Scholar 

  26. 26

    T. Ding, T. Li, Z. Wang, and J. Li, Sci. Rep. 7, 8612 (2017).

    CAS  Article  Google Scholar 

  27. 27

    I. A. S. V. Packiavathy, S. Priya, S. K. Pandian, and A. V. Ravi, Food Chem. 148, 453 (2014).

    CAS  Article  Google Scholar 

  28. 28

    H. Fu, Y. Wang, X. Li, and W. Chen, Compos. Sci. Technol. 126, 86 (2016).

    CAS  Article  Google Scholar 

  29. 29

    S. Jana, A. V. Kondakova, S. N. Shevchenko, et al., Colloids Surf., B 151, 249 (2017).

    CAS  Article  Google Scholar 

  30. 30

    Y. Zhang, Y. Chen, H. Zhang, et al., J. Inorg. Biochem. 118, 59 (2013).

    CAS  Article  Google Scholar 

  31. 31

    D. Ravindran, S. Ramanathan, K. Arunachalam, et al., J. Appl. Microbiol. 124, 1425 (2018).

    CAS  Article  Google Scholar 

Download references


The study was supported by a subsidy allocated within the framework of state support of Kazan (Volga) Federal University in order to increase its competitiveness among world leading scientific and educational centers, and by the Russian Foundation for Basic Research (project no. 18-29-25057 mk).

Author information



Corresponding author

Correspondence to Y. V. Cherednichenko.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article


Download citation