Skip to main content
Log in

Influence of the Size of Nanoparticles and Their Agglomerates on the Physicomechanical Properties of Epoxynanocomposites

  • Constructive Nanomaterials
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

In this work, the relations between the parameters of the structure of epoxy nanodisperions and nanocomposites and a complex of physicomechanical properties of epoxynanocomposites upon the distribution of nanoparticles on nano- and microlevels are established. It is shown that the morphology of epoxy nanocomposites and the size of agglomerates in an epoxy oligomer are almost unchanged during hardening upon the transition of a binder from liquid to solid state (matrix) both on the nanolevel (to ~100 nm) and on the microlevel (to ~390 nm). It is found for the first time that the optimal physicochemical properties are achieved for nanodispersions and nanocomposites only upon the formation of agglomerates of nanoparticles 150–200 nm in size in the structure of epoxynanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. T. Kakhramanov, A. G. Azizov, V. S. Osipchik, U. M. Mamedli, and N. B. Arzumanova, “Nanostructured composites and polymeric materials technology,” Plast. Massy, Nos. 1–2, 49–57 (2016).

    Google Scholar 

  2. E. R. Badamshina, M. P. Gafurova, and Ya. I. Estrin, “Modification of carbon nanotubes and synthesis of polymeric composites involving the nanotubes,” Russ. Chem. Rev. 79, 945 (2010).

    Article  Google Scholar 

  3. E. N. Kablov, S. V. Kondrashov, and G. Yu. Yurkov, “Prospects of using carbonaceous nanoparticles in binders for polymer composites,” Nanotechnol. Russ. 8, 163 (2013).

    Article  Google Scholar 

  4. E. A. Novikovskii, “Modification of epoxy compositions with ultrafine carbon particles of thermal and detonation synthesis,” Cand. Sci. Dissertation (Polzunov Altai State Tech. Univ., Barnaul, 2017).

    Google Scholar 

  5. D. Yu. Shitov, T. P. Kravchenko, Yu. M. Budnitskii, Z. N. Nei, and V. S. Osipchik, “Polyolefin-based nanocomposites,” Plast. Massy, Nos. 3–4, 9–12 (2015).

    Google Scholar 

  6. S. A. Larionov, I. S. Deev, G. N. Petrova, and E. Ya. Beider, “Effect of carbon fillers on the electrophysical, mechanical and rheological properties of polyethylene,” Tr. VIAM, No. 9, 04 (2013).

    Google Scholar 

  7. S. V. Kondrashov, K. A. Shashkeev, O. V. Popkov, and L. V. Solov’yanchik, “Promising technologies for obtaining functional materials of structural designation based on nanocomposites with CNT (review),” Tr. VIAM, No. 3, 07 (2016).

    Article  Google Scholar 

  8. Polymer Nanocomposites, Ed. by Yiu-Wing May and Zhong-Zhen Yu (CRC, Boca Raton, FL, 2006).

  9. R. V. Akatenkov, V. N. Aleksashin, I. V. Anoshkin, A. N. Babin, V. A. Bogatov, V. P. Grachev, S. V. Kondrashov, V. T. Minakov, and E. G. Rakov, “Effect of small amounts of functionalized nanotubes on the physicomechanical properties and structure of epoxy compositions,” Deform. Razrush. Mater., No. 11, 22–24 (2011).

    Google Scholar 

  10. G. M. Gunyaev, E. N. Kablov, and V. M. Aleksashin, “Modification of structural carbon plastics with carbon nanoparticles,” Ross. Khim. Zh. 54 (1), 5–11 (2010).

    Google Scholar 

  11. A. A. Pykhtin and I. D. Simonov-Emel’yanov, “Technological properties of nanodispersions based on DER-330 epoxy resin and WS-50 fumed silica,” Tonk. Khim. Tekhnol. 11 (4), 63–67 (2016).

    Google Scholar 

  12. I. D. Simonov-Emel’yanov, A. A. Pykhtin, S. A. Smotrova, and A. N. Kovaleva, “Structure formation and physico-mechanical characteristics of epoxy nanocomposites,” Vse Mater. Entsikl. Spravochnik, No. 2, 2–7 (2017).

    Google Scholar 

  13. V. I. Klenin, S. Yu. Shchegolev, and V. I. Lavrushin, Characteristic Functions of Light Scattering of Dispersion Systems (Sarat. Gos. Univ., Saratov, 1977) [in Russian].

    Google Scholar 

  14. E. D. Shchukin, A. V. Pertsov, and E. A. Amelina, Colloid Chemistry, The School-Book for Higher Schools (Khimiya, Moscow, 2004) [in Russian].

    Google Scholar 

  15. S. Yu. Kudryashov and L. A. Onuchak, Colloid Chemistry, The Practical Guide (Univers-grupp, Samara, 2006) [in Russian].

    Google Scholar 

  16. V. M. Luk’yanovich, Electro Microscopy in Physicochemical Studies (Akad. Nauk SSSR, Moscow, 1960), pp. 90–116 [in Russian].

    Google Scholar 

  17. I. D. Simonov-Emel’yanov, “Building structures in dispersion-filledpolymers and properties of composite materials,” Plast. Massy, Nos. 9–10, 29–36 (2015).

    Google Scholar 

  18. N. N. Trofimov and M. Z. Kanovich, Durability and Reliability of Composites (Nauka, Moscow, 2014) [in Russian].

    Google Scholar 

  19. D. Paul and S. Newman, Polymer Blends (Academic, San Diego, CA, 1978), Vol. 2.

    Book  Google Scholar 

  20. V. N. Kuleznev, Polymer Blends and Alloys (Nauch. Osnovy Tekhnol., St. Petersburg, 2013) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Pykhtin.

Additional information

Original Russian Text © I.D. Simonov-Emel’yanov, A.A. Pykhtin, K.A. Mikhal’chenko, 2018, published in Rossiiskie Nanotekhnologii, 2018, Vol. 13, Nos. 7–8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonov-Emel’yanov, I.D., Pykhtin, A.A. & Mikhal’chenko, K.A. Influence of the Size of Nanoparticles and Their Agglomerates on the Physicomechanical Properties of Epoxynanocomposites. Nanotechnol Russia 13, 372–377 (2018). https://doi.org/10.1134/S1995078018040146

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078018040146

Navigation