Skip to main content
Log in

Development of Fe/Cu and Fe/Ag Bimetallic Nanoparticles for Promising Biodegradable Materials with Antimicrobial Effect

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Fe, Cu, and Ag nanoparticles, as well as Fe/Cu and Fe/Ag bimetallic nanoparticles, have been produced via the electric explosion of wires. The average size, shape, structure, chemical composition, and zeta potential are determined for nanoparticles. The bimetallic nanoparticles have the structure of Janus nanoparticles with a boundary between two metal phases. Samples of consolidated materials are obtained via cold pressing at a pressure of 3 t/cm2 from bimetallic nanoparticles and mixtures of Fe/Cu and Fe/Ag monomolecular nanoparticles. All the samples have antimicrobial properties against gram-negative cells of a Pseudomonas aeruginosa strain and gram-positive cells of a Staphylococcus aureus one. The dissolution rate for iron in a sodium-phosphate buffer solution of the Fe/Cu consolidated samples is significantly higher than that obtained from Fe/Ag nanoparticles and mixtures of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Gotman, “Characteristics of metals used in implant,” J. Endourol. 11, 383–389 (1997).

    Article  Google Scholar 

  2. T. W. Bauer and G. F. Muschler, “Bone graft materials. An overview of the basic science,” Clin. Orthop. Relat. Res. 371, 10–27 (2000).

    Article  Google Scholar 

  3. F. Witte, “The history of biodegradable magnesium implants: a review,” Acta Biomater. 6, 1680–1692 (2010).

    Article  Google Scholar 

  4. M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias, “Magnesium and its alloys as orthopedic biomaterials: A review,” Biomaterials 27, 1728–1734 (2006).

    Article  Google Scholar 

  5. M. Moravej, A. Purnama, M. Fiset, J. Couet, and D. Mantovani, “Electroformed pure iron as a new biomaterial for degradable stets: In vitro degradation and preliminary cell viability studies,” Acta Biomater. 6, 1843–1851 (2010).

    Article  Google Scholar 

  6. M. Schinhammer, A. C. Hanzi, J. F. Loffler, and P. J. Uggowitzer, “Desing strategy for biodegradable Fe-based alloys for medical applications,” Acta Biomater. 6, 1705–1713 (2010).

    Article  Google Scholar 

  7. A. Sharipova, S. G. Psakhie, S. K. Swain, E. Y. Gutmanas, and I. Gotman, “High-strength bioresorbable Fe–Ag nanocomposite scaffolds: Processing and properties,” AIP Conf. Proc. 1683, 020244 (2015).

    Article  Google Scholar 

  8. L. S. Nair and C. T. Laurencin, “Nanofibers and nanoparticles for orthopaedic surgery applications,” J. Bone Jt. Surg. Am. 90, 128–131 (2008).

    Article  Google Scholar 

  9. L. Juan, Z. Zhimin, M. Anchun, L. Lei, and Z. Jingchao, “Deposition of silver nanoparticles on titanium surface for antibacterial effect,” Int. J. Nanomed. 5, 261–267 (2010).

    Article  Google Scholar 

  10. R. Nirmala, F. A. Sheikh, M. A. Kanjwal, J. H. Lee, S. J. Park, R. Navamathavan, and H. Y. Kim, “Synthesis and characterization of bovine femur bone hydroxyapatite containing silver nanoparticles for the biomedical applications,” J. Nanopart. Res. 13, 1917–1927 (2011).

    Article  Google Scholar 

  11. S. Maitre, K. Jaber, J. L. Perrot, C. Guy, and F. Cambazard, “Increased serum and urinary levels of silver during treatment with topical silver sulfadiazine,” Ann. Dermatol. Venereol. 129, 217–219 (2002).

    Google Scholar 

  12. V. K. Poon and A. Burd, “In vitro cytotoxity of silver: Implication for clinical wound care,” Burns 30, 140–147 (2004).

    Article  Google Scholar 

  13. P. K. Lam, E. S. Chan, W. S. Ho, and C. T. Liew, “In vitro cytotoxicity testing of a nanocrystalline silver dressing (acticoat) on cultured keratinocytes,” Brit. J. Biomed. Sci. 61, 125–127 (2004).

    Article  Google Scholar 

  14. J. F. Fraser, L. Cuttle, M. Kempf, and R. M. Kimble, “Cytotoxicity of topical antimicrobial agents used in burn wounds in Australasia,” ANS J. Surg. 74, 139–142 (2004).

    Article  Google Scholar 

  15. F. Delogu, “Thermodynamic phase transitions in nanometer-sized metallic systems,” Mater. Sci. Forum 653, 31–53 (2010).

    Article  Google Scholar 

  16. C. Hock, S. Strassburg, H. Haberland, B. Issendorff, A. Aguado, and M. Schmidt, “Melting-point depression by insoluble impurities: a finite size effect,” Phys. Rev. Lett. 101, 023401 (2008).

    Article  Google Scholar 

  17. A. Barnard, “Modelling of nanoparticles: approaches to morphology and evolution,” Rep. Prog. Phys. 73, 086502 (2010).

    Article  Google Scholar 

  18. M. M. Mariscal, O. A. Oviedo, and E. P. M. Leiva, Metal Clusters and Nanoalloys from Modeling to Applications (Springer, New York, Heidelberg, Dordrecht, London, 2013).

    Book  Google Scholar 

  19. M. I. Lerner, A. V. Pervikov, E. A. Glazkova, N. V. Svarovskaya, A. S. Lozhkomoev, and S. G. Psakhie, “Structures of binary metallic nanoparticles produced by electrical explosion of two wires from immiscible elements,” Powder Technol. 288, 371–378 (2016).

    Article  Google Scholar 

  20. M. I. Lerner, N. V. Svarovskaya, S. G. Psakh’e, and O. V. Bakina, “Production technology, characteristics, and some applications of electric-explosion nanopowder of metals,” Nanotechnol. Russ. 4, 741–757(2009).

    Article  Google Scholar 

  21. X. He, X. Zhang, L. Bai, R. Hang, X. Huang, L. Qin, X. Yao, and B. Tang, “Antibacterial ability and osteogenic activity of porous Sr/Ag-containing TiO2 coatings,” Biomed. Mater. 11, 045008 (2016).

    Article  Google Scholar 

  22. S. K. Friendlander and C. S. Wang, “The self-preserving particle size distributions for coagulation by brownian motion,” J. Colloid Interface Sci. 22, 126–132 (1966).

    Article  Google Scholar 

  23. R. W. Revie and H. H. Uhlig, Corrosion and Corrosion Control, An Introduction to Corrosion Science and Engineering (Wiley, New York, 2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Lozhkomoev.

Additional information

Original Russian Text © A.S. Lozhkomoev, M.I. Lerner, A.V. Pervikov, S.O. Kazantsev, A.N. Fomenko, 2018, published in Rossiiskie Nanotekhnologii, 2018, Vol. 13, Nos. 1–2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozhkomoev, A.S., Lerner, M.I., Pervikov, A.V. et al. Development of Fe/Cu and Fe/Ag Bimetallic Nanoparticles for Promising Biodegradable Materials with Antimicrobial Effect. Nanotechnol Russia 13, 18–25 (2018). https://doi.org/10.1134/S1995078018010081

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078018010081

Navigation