Advertisement

Nanotechnologies in Russia

, Volume 12, Issue 11–12, pp 667–672 | Cite as

Features of the Mutagenic and Cytotoxic Effects of Nanosilver and Silver Sulfate in Mice

  • V. S. Zhurkov
  • O. N. Savostikova
  • V. V. Yurchenko
  • E. K. Krivtsova
  • M. A. Kovalenko
  • L. V. Murav’eva
  • A. V. Alekseeva
  • N. N. Belyaeva
  • R. I. Mikhailova
  • L. P. Sycheva
Article

Abstract

Due to their antibacterial, antifungal, antiviral, and anti-inflammatory properties, silver and, in recent years, nanosilver (NS) have been widely used in various fields of human activity. However, it has been found that nanomaterials acquire new properties, including those with respect to toxicity. The purpose of this work was to study the effect of NS and the ionic form of silver, silver sulfate (SS), on somatic mice cells in vivo. A model that is closest to the conditions of exposure to humans, namely the supply of NS and SS with drinking water, is used. The effect of NS particles coated with gum Arabic (diameter 14 ± 0.3 nm) and SS at concentrations of 0.1, 5, 50, and 500 mg/L upon 2-week exposure is studied. A cytom assay, including counting the micronuclei and other nuclear anomalies in the cells of the bone marrow, lung, colon, and bladder, was conducted. No effect of NS or SS on bone-marrow cells is revealed in the standard micronucleus test. NS at a concentration of 50 mg/L increases the cytogenetic effect by 1.9 times at the place of action, the colon, when compared to the control. In the lungs, the rate of cells with micronuclei is increased threefold under the action of NS at a concentration of 500 mg/L. The effect of NS on reducing the proliferation level in the colon is confirmed in vivo; this effect has been previously found in vitro by other authors. SS at a concentration of 50 mg/L increases the rate of cells with cytogenetic lesions in the colon and bladder by 1.9 and 1.3 times, respectively. These effects should be considered when assessing the risk of these compounds.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    TOXNET Databases. https://toxnet.nlm.nih.gov/cgibin/sis/search2/f?./temp/~DkQ1Io:3.Google Scholar
  2. 2.
    I. E. Stanishevskaya, A. M. Stoinova, A. I. Marakhova, and Ya. M. Stanishevskii, “Silver nanoparticles: preparation and use for medical purposes,” Razrab. Registr. Lekarstv. Sredstv, No. 14 (2106). http://pharmjournal. ru/articles/stati/nanochasticy-serebra-polucheniei-primenenie-v-medicinskih-celyah-n14-fevral-2016.Google Scholar
  3. 3.
    D. K. Tiwari, T. Jin, and J. Behari, “Dose-dependent in-vivo toxicity assessment of silver nanoparticle in wistar rats,” Toxicol. Mech. Methods 21, 13–24 (2011). doi 10.3109/15376516.2010.529184CrossRefGoogle Scholar
  4. 4.
    M. M. Dobrzyńska, A. Gajowik, J. Radzikowska, A. Lankoff, M. Dušinská, and M. Kruszewski, “Genotoxicity of silver and titanium dioxide nanoparticles in bone marrow cells of rats in vivo,” Toxicology 315, 86 (2014). doi 10.1016/j.tox.2013.11.012CrossRefGoogle Scholar
  5. 5.
    M. M. El Mahdy, T. A. Eldin, H. S. Aly, et al., “Evaluation of hepatotoxic and genotoxic potential of silver nanoparticles in albino rats,” Exp. Toxicol. Pathol. 67, 21–29 (2015). doi 10.1016/j.etp.2014.09.005CrossRefGoogle Scholar
  6. 6.
    A. K. Patlolla, D. Hackett, and P. B. Tchounwou, “Genotoxicity study of silver nanoparticles in bone marrow cells of sprague-dawley rats,” Food. Chem. Toxicol. 85, 52–60 (2015). doi 10.1016/j.fct.2015.05.005CrossRefGoogle Scholar
  7. 7.
    M. J. M. Ghosh, S. Sinha, et al., “In vitro and in vivo genotoxicity of silver nanoparticles,” Mutation Res. 749, 60 (2012).CrossRefGoogle Scholar
  8. 8.
    Y. S. Kim, J. S. Kim, H. S. Cho, et al., “Twenty-eightday oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in sprague-dawley rats,” Inhal. Toxicol. 20, 575–83 (2008).CrossRefGoogle Scholar
  9. 9.
    J. S. Kim, J. H. Sung, J. H. Ji, et al., “In vivo genotoxicity of silver nanoparticles after 90-day silver nanoparticle inhalation exposure,” SH W 2, 34–38 (2011). doi 10.5491/SHAW.2011.2.1.34Google Scholar
  10. 10.
    Y. Li, J. A. Bhalli, W. Ding, et al., “Cytotoxicity and genotoxicity assessment of silver nanoparticles in mouse,” Nanotoxicology 8 (Suppl. 1), 36 (2014). doi 10.3109/17435390.2013.855827CrossRefGoogle Scholar
  11. 11.
    M. F. Song, Y. S. Li, H. Kasai, and K. Rawai, “Metal nanoparticle-induced micronuclei and oxidative DNA damage in mice,” J. Clin. Biochem. Nutrit. 50, 211 (2012).CrossRefGoogle Scholar
  12. 12.
    C. G. Ordzhonikidze, L. K. Ramaiyya, E. M. Egorova, and A. V. Rubanovich, “Genotoxic effects of silver nanoparticles on mice in vivo,” Acta Nat. 3, 99–101 (2009).Google Scholar
  13. 13.
    J. Gromadzka-Ostrowska, K. Dziendzikowska, A. Lankoff, et al., “Silver nanoparticles effects on epididymal sperm in rats,” Toxicol. Lett. 214, 251 (2012).CrossRefGoogle Scholar
  14. 14.
    B. A. Katsnelson, L. I. Privalova, V. B. Gurvich, et al., “Comparative in vivo assessment of some adverse bioeffects of equidimensional gold and silver nanoparticles and the attenuation of nanosilver’s effects with a complex of innocuous bioprotectors,” Int. J. Mol. Sci. 14, 2449–2483 (2013). doi 10.3390/ijms14022449CrossRefGoogle Scholar
  15. 15.
    Silver sulfate. Safety Data Sheet According to Regulation (EU) No. 1907/2006. Revision date: 02/06/2014. Version 1.3. http://www. merckmillipore.com/INTERSHOP/ web/WFS/Merck-RU-Site/ru_RU/-/USD/ ProcessMSDS-Start?PlainSKU=MDA_CHEM-101534 & Origin=SERP.Google Scholar
  16. 16.
    “Evaluation of mutagenic activity of environmental factors in cells of various mammalian organs using the micronuclear method,” Guidelines Approved by Acad. RAMN Yu. A. Rakhmanin (Moscow, 2001).Google Scholar
  17. 17.
    Polyorganic Micronuclear Test in Ecological and Hygienic Studies, Ed. by Yu. A. Rakhmanin and L. P. Sycheva (Genius, Moscow, 2007) [in Russian].Google Scholar
  18. 18.
    W. Schmid, “The micronucleus test,” Mutat Res. 31, 9–15 (1975).CrossRefGoogle Scholar
  19. 19.
    L. P. Sycheva, L. V. Murav’eva, V. S. Zhurkov, R. I. Mikhailova, O. N. Savostikova, A. V. Alekseeva, and S. M. Sheremet’eva, “Study of cytogenetic and cytotoxic effects of nanosilver and silver sulfate in germ cells of mice in vivo,” Nanotechnol. Russ. 11, 256 (2016).CrossRefGoogle Scholar
  20. 20.
    D. P. Lankveld, A. G. Oomen, P. A. Krystek, et al., “The kinetics of the tissue distribution of silver nanoparticles of different sizes,” Biomaterials 31, 8350–8361 (2010).CrossRefGoogle Scholar
  21. 21.
    J. Tang, L. Xiong, S. Wang, et al., “Distribution, translocation and accumulation of silver nanoparticles in rats,” J. Nanosci. Nanotechnol. 9, 4924–4932 (2009).CrossRefGoogle Scholar
  22. 22.
    Y. S. Kim, M. Y. Song, Park, et al., “Subchronic oral toxicity of silver nanoparticles,” Part Fibre Toxicol. 7, 20 (2010).CrossRefGoogle Scholar
  23. 23.
    M. van der Zande, R. J. Vandebriel, E. van Doren, et al., “Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure,” ACS Nano 6, 7427–7442 (2012). doi 10.1021/nn302649pCrossRefGoogle Scholar
  24. 24.
    R. Foldbjerg, E. S. Irving, Y. Hayashi, et al., “Global gene expression profiling of human lung epithelial cells after exposure to nanosilver,” Toxicol. Sci. 130, 145–157 (2012). doi 10.1093/toxsci/kfs225CrossRefGoogle Scholar
  25. 25.
    N. Asare, C. Instanes, W. J. Sandberg, et al., “Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells,” Toxicology 291, 65–72 (2012).CrossRefGoogle Scholar
  26. 26.
    J. Cui and Y. D. Zhang, “Effects of different doses of nano silver on vascular endothelial cell proliferation in vitro,” Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 27, 697–699 (2011).Google Scholar
  27. 27.
    P. V. Asharani, M. P. Hande, and S. Valiyaveettil, “Anti-proliferative activity of silver nanoparticles,” BMC Cell Biol. 10, 65 (2009).CrossRefGoogle Scholar
  28. 28.
    M. J. Piao, K. A. Kang, I. K. Lee, et al., “Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis,” Toxicol. Lett. 201, 92–100 (2011).CrossRefGoogle Scholar
  29. 29.
    J. E. Choi, S. Kim, J. H. Ahn, et al., “Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish,” Aquat. Toxicol. 100, 151–159 (2010).CrossRefGoogle Scholar
  30. 30.
    M. Ahamed, R. Posgai, T. J. Gorey, et al., “Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in drosophila melanogaster,” Toxicol. Appl. Pharmacol. 242, 263–269 (2010).CrossRefGoogle Scholar
  31. 31.
    E. J. Park, J. Yi, Y. Kim, et al., “Silver nanoparticles induce cytotoxicity by a trojan-horse type mechanism,” Toxicol. In Vitro 24, 872–878 (2010).CrossRefGoogle Scholar
  32. 32.
    A. R. Gliga, S. Skoglund, I. O. Wallinder, B. Fadeel, and H. L. Karlsson, “Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and ag release,” Part. Fibre Toxicol. 17 (11), 11 (2014). doi 10.1186/1743-8977-11-11CrossRefGoogle Scholar
  33. 33.
    M. V. Park, A. M. Neigh, J. P. Vermeulen, et al., “The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles,” Biomaterials 32, 9810–9817 (2011).CrossRefGoogle Scholar
  34. 34.
    N. Hadrup, K. Loeschner, A. K. Mortensen, et al., “The similar neurotoxic effects of nanoparticulate and ionic silver in vivo and in vitro,” Neurotoxicology 33, 416–423 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. S. Zhurkov
    • 1
  • O. N. Savostikova
    • 1
  • V. V. Yurchenko
    • 1
  • E. K. Krivtsova
    • 1
  • M. A. Kovalenko
    • 1
  • L. V. Murav’eva
    • 1
  • A. V. Alekseeva
    • 1
  • N. N. Belyaeva
    • 1
  • R. I. Mikhailova
    • 1
  • L. P. Sycheva
    • 2
  1. 1.Center for Strategic Planning and Management of Biomedical Health RisksMinistry of Health of the Russian FederationMoscowRussia
  2. 2.Burnazyan Federal Medical Biophysical CenterFederal Medical Biological Agency of RussiaMoscowRussia

Personalised recommendations