Nanotechnologies in Russia

, Volume 12, Issue 11–12, pp 635–642 | Cite as

Synthesis and Modification of Carbon Inverse Opal Nanostructres Based on Anthracene and Their Electrochemical Characteristics

  • N. S. Sukhinina
  • V. M. Masalov
  • A. A. Zhokhov
  • I. I. Khodos
  • I. I. Zverkova
  • Q. Liu
  • J. Wang
  • G. A. Emelchenko


Carbon structures with the inverse opal lattice modified with nickel compounds have been synthesized by the template method. The carbon precursor is anthracene, whose molecule has a planar structure consisting of three benzene rings. The resulting nanostructures are characterized by X-ray diffraction, scanning and high-resolution transmission electron spectroscopy, and gas adsorption–desorption. Electrochemical characteristics of composites being used as the electrode material are measured.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Nishihara and T. Kyotani, “Templated nanocarbons for energy storage,” Adv. Mater. 24, 4473–4498 (2012).CrossRefGoogle Scholar
  2. 2.
    H. Marsh and F. R. Reinoso, Activated Carbon (Elsevier, UK, 2006).Google Scholar
  3. 3.
    F. Beguin and E. Frackowiak, in Nanomaterials Handbook, Ed. by Yu. Gogotsi (CRC, oca Raton, FL, 2006), Chap. 9, pp. 295–320.Google Scholar
  4. 4.
    R. Kötz and M. Carlen, “Principles and applications of electrochemical capacitors,” Electrochim. Acta 45, 2483–2498 (2000).CrossRefGoogle Scholar
  5. 5.
    C. Vix-Guterl, S. Saadallah, K. Jurewicz, E. Frackowiak, M. Reda, and J. Parmentier, “Supercapacitor electrodes from new ordered porous carbon materials obtained by a templating procedure,” Mater. Sci. Eng., B 108, 148–155 (2004).CrossRefGoogle Scholar
  6. 6.
    B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer Academic, Plenum, New York, 1999).CrossRefGoogle Scholar
  7. 7.
    M. Mastragostino, C. Arbizzni, R. Paraventi, and A. Zanelli, “Polymer selection and cell design for electric-vehicle supercapacitors,” J. Electrochem. Soc. 147, 407–412 (2000).CrossRefGoogle Scholar
  8. 8.
    P. J. F. Harris, A. Burian, and S. Duber, “High-resolution electron microscopy of a microporous carbon,” Philos. Mag. Lett. 80, 381–386 (2000).CrossRefGoogle Scholar
  9. 9.
    P. J. F. Harris and S. C. Tsang, “High-resolution electron microscopy studies of non-graphitizing carbons,” Philos. Mag. A 76, 667–677 (1997).CrossRefGoogle Scholar
  10. 10.
    G. A. Emel’chenko, V. M. Masalov, A. A. Zhokhov, and I. I. Khodos, “Microporous and mesoporous carbon nanostructures with the inverse opal lattice,” Phys. Solid State 55, 1105 (2013).CrossRefGoogle Scholar
  11. 11.
    B. Mendoza-Sánchez and Yu. Gogotsi, “Synthesis of two-dimensional materials for capacitive energy storage,” Adv. Mater. 28, 6104–6135 (2016).CrossRefGoogle Scholar
  12. 12.
    The Chemistry of Petroleum Hydrocarbons, Ed. by B. T. Brooks (Reinhold, New York, 1954), Vol.2.Google Scholar
  13. 13.
    V. M. Masalov, N. S. Sukhinina, and G. A. Emel’chenko, “Colloidal particles of silicon dioxide for the formation of opal-like structures,” Phys. Solid State 53, 1135 (2011).CrossRefGoogle Scholar
  14. 14.
    D. Lozano-Castello, M. A. Lillo-Rodenas, D. Cazorla-Amoros, and A. Linares-Solano, “Preparation of activated carbons from spanish anthracite I. Activation by KOH,” Carbon 39, 741–749 (2001).CrossRefGoogle Scholar
  15. 15.
    M. Huang, F. Li, J. Y. Ji, Y. X. Zhang, Zhao X. Li, and X. Gao, “Facile synthesis of single-crystalline NiO nanosheet arrays on Ni foam for high-performance supercapacitors,” Cryst. Eng. Commun. 16, 2878–2884 (2014).CrossRefGoogle Scholar
  16. 16.
    M. J. Avena, M. V. Vazquez, R. E. Carbonio, C. P. de Pauli, and V. A. Macagno, “A simple and novel method for preparing Ni(OH)2. Part I: Structural studies and voltammetric response,” J. Appl. Electrochem. 24, 256–260 (1994).CrossRefGoogle Scholar
  17. 17.
    B. Li, Y. Xie, Ch. Wu, Zh. Li, and J. Zhang, “Selective synthesis of cobalt hydroxide carbonate 3D architectures and their thermal conversion to cobalt spinel 3D superstructures,” Mater. Chem. Phys. 99, 479–486 (2006).CrossRefGoogle Scholar
  18. 18.
    N. S. Sukhinina, V. M. Masalov, A. A. Zhokhov, I. I. Zverkova, and G. A. Emelchenko, “C-IOP/ NiO/Ni7S6 composite with the inverse opal lattice as an electrode for supercapacitors,” Proc. SPIE 9519, 95190N–1–6 (2015).CrossRefGoogle Scholar
  19. 19.
    Z. Gao, J. Wang, Zh. Li, W. Yang, B. Wang, M. Hou, Y. He, Q. Liu, T. Mann, P. Yang, M. Zhang, and L. Liu, “Graphene nanosheet/Ni2+/Al3+ layered double-hydroxide composite as a novel electrode for a supercapacitor,” Chem. Mater. 23, 3509–3516 (2011).CrossRefGoogle Scholar
  20. 20.
    S. Chen, J. Zhu, X. Wu, Q. Han, and X. Wang, “Graphene oxide-MnO2 nanocomposites for supercapacitors,” ACS Nano 4, 2822–2830 (2010).CrossRefGoogle Scholar
  21. 21.
    X. Zhao, A. Wang, J. Yan, G. Sun, L. Sun, and T. Zhang, “Synthesis and electrochemical performance of heteroatom-incorporated ordered mesoporous carbons,” Chem. Mater. 22, 5463–5473 (2010).CrossRefGoogle Scholar
  22. 22.
    R. Y. Lin, D. C. Hu, and Y. A. Chang, “Metallurgical transactions B-process,” Metallurgy 9, 531 (1978).Google Scholar
  23. 23.
    H. J. Okamoto, Phase Equilib. Diffus. 30, 123 (2009).CrossRefGoogle Scholar
  24. 24.
    S. Brunauer, P. H. Emmett, and E. Teller, “Adsorption of gases in multimolecular layers,” J. Am. Chem. Soc. 60, 309 (1938).CrossRefGoogle Scholar
  25. 25.
    G. Yu. Gor, M. Thommes, K. A. Cychosz, and A. V. Neimark, “Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption,” Carbon 50, 1583–1590 (2012).CrossRefGoogle Scholar
  26. 26.
    K. Hung, Ch. Masarapu, T. Ko, and B. Wei, “Widetemperature range operation supercapacitors from nanostructured activated carbon fabric,” J. Power Sources 193, 944–949 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. S. Sukhinina
    • 1
  • V. M. Masalov
    • 1
  • A. A. Zhokhov
    • 1
  • I. I. Khodos
    • 2
  • I. I. Zverkova
    • 1
  • Q. Liu
    • 3
  • J. Wang
    • 3
  • G. A. Emelchenko
    • 1
  1. 1.Institue of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Institute of Microelectronics Technology and High Purity MaterialsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  3. 3.Harbin Engineering UniversityHarbinChina

Personalised recommendations