Nanotechnologies in Russia

, Volume 12, Issue 11–12, pp 605–612 | Cite as

Electrochemical Properties of Li2ZnTi3O8/C Nanomaterials

  • I. A. Stenina
  • P. A. Nikiforova
  • T. L. Kulova
  • A. M. Skundin
  • A. B. Yaroslavtsev
Article
  • 6 Downloads

Abstract

Li2ZnTi3O8/C nanomaterials are synthesized using the sol-gel method; polyvinylidene fluoride (PVDF) and sucrose are used as carbon sources. The materials are characterized using XRD, TEM, TGA, and Raman spectroscopy. The influence of the carbon precursor and the annealing temperature on the electrochemical properties of the materials is investigated. It has been shown that the addition of both polyvinylidene fluoride and sucrose leads to the formation of nanosized lithium zinc titanate and high conductive carbon. This modification leads to the enhancement of electrochemical properties of the materials; namely, the discharge capacity of Li2ZnTi3O8 and Li2ZnTi3O8/C-5F annealed at 800°C under a current of 20 mA/g are 180 and 227 mA h/g, respectively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Zhao, R. Ran, M. Liu, and Z. Shao, Mater. Sci. Eng. R 98, 1 (2015).CrossRefGoogle Scholar
  2. 2.
    A. B. Yaroslavtsev, T. L. Kulova, and A. M. Skundin, Russ. Chem. Rev. 84, 826 (2015).CrossRefGoogle Scholar
  3. 3.
    Zh. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, and J. Liu, Chem. Rev. 111, 3577 (2011).CrossRefGoogle Scholar
  4. 4.
    Z. S. Hong, M. D. Wei, X. K. Ding, L. L. Jiang, and K. M. Wei, Electrochem. Commun. 12, 720 (2010).CrossRefGoogle Scholar
  5. 5.
    T. Liu, H. Tang, L. Zan, and Zh. J. Tang, Electroanal. Chem. 771, 10 (2016).CrossRefGoogle Scholar
  6. 6.
    L. Wang, L. J. Wu, Z. H. Li, G. T. Lei, Q. Z. Xiao, and P. Zhang, Electrochim. Acta 56, 5343 (2011).CrossRefGoogle Scholar
  7. 7.
    L. Wang, B. Chen, Zh. Meng, B. Luo, X. Wang, and Y. Zhao, Electrochim. Acta 188, 135 (2016).CrossRefGoogle Scholar
  8. 8.
    H. Tang, J. Zhu, Zh. Tang, and Ch. J. Ma, Electroanal. Chem. 731, 60 (2014).CrossRefGoogle Scholar
  9. 9.
    G.-N. Zhu, C.-X. Wang, and Y.-Y. J. Xia, Electrochem. Soc. 158, A102 (2011).CrossRefGoogle Scholar
  10. 10.
    H. Tang and Zh. J. Tang, Alloys Compd. 613, 267 (2014).CrossRefGoogle Scholar
  11. 11.
    H. Tang, L. Zan, W. Mao, and Zh. J. Tang, Electroanal. Chem. 751, 57 (2015).CrossRefGoogle Scholar
  12. 12.
    Ch. Chen, Ch. Ai, X. Liu, Y. He, and Y. J. Wu, Alloys Compd. 698, 692 (2017).CrossRefGoogle Scholar
  13. 13.
    X. Han, Z. Zhao, Y. Xu, D. Liu, H. Zhang, and C. Zhao, RSC Adv. 4, 41968 (2014).CrossRefGoogle Scholar
  14. 14.
    D. Gryzlov, S. Novikova, T. Kulova, A. Skundin, and A. Yaroslavtsev, Mater. Des. 104, 95 (2016).CrossRefGoogle Scholar
  15. 15.
    S. Krishna Kumar, S. Ghosh, P. Ghosal, and S. K. Martha, J. Power Sources 356, 115 (2017).CrossRefGoogle Scholar
  16. 16.
    T. Nakajima, V. Gupta, Y. Ohzawa, M. Koh, R. N. Singh, A. Tressaud, and E. Durand, J. Power Sources 104, 108 (2002).CrossRefGoogle Scholar
  17. 17.
    P. A. Nikiforova, I. A. Stenina, T. L. Kulova, A. M. Skundin, and A. B. Yaroslavtsev, Inorg. Mater. 52 (11), 1137 (2016).CrossRefGoogle Scholar
  18. 18.
    J. D. Wilcox, M. M. Doeff, M. Marcinek, and R. Kostecki, J. Electrochem. Soc. 154, A389 (2007).CrossRefGoogle Scholar
  19. 19.
    F. Tuinstra and J. L. J. Koenig, Chem. Phys. 53, 1126 (1970).Google Scholar
  20. 20.
    I. A. Stenina, S. S. Bukalov, T. L. Kulova, A. M. Skundin, N. Yu. Tabachkova, and A. B. Yaroslavtsev, Nanotechnol. Russ. 10, 865 (2015).CrossRefGoogle Scholar
  21. 21.
    Zh. Zhu, F. Cheng, and J. Chen, J. Mater. Chem. A 9484 (2013).Google Scholar
  22. 22.
    Z. Zheng, Y. Wang, A. Zhang, T. Zhang, F. Cheng, Zh. Tao, and J. Chen, J. Power Sources 198, 229 (2012).CrossRefGoogle Scholar
  23. 23.
    Yu. Xu, Zh. Hong, L. Xia, J. Yang, and M. Wei, Electrochim. Acta 88, 74 (2013).CrossRefGoogle Scholar
  24. 24.
    I. A. Stenina, T. L. Kulova, A. M. Skundin, and A. B. Yaroslavtsev, Mater. Res. Bull. 75, 178 (2016).CrossRefGoogle Scholar
  25. 25.
    W. J. H. Borghols, M. Wagemaker, U. Lafont, E. M. Kelde, and F. M. Mulder, J. Am. Chem. Soc. 131, 17786 (2009).CrossRefGoogle Scholar
  26. 26.
    I. A. Stenina, A. N. Sobolev, A. A. Kuz’mina, T. L. Kulova, A. M. Skundin, N. Yu. Tabachkova, and A. B. Yaroslavtsev, Inorg. Mater. 53, 1039 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. A. Stenina
    • 1
  • P. A. Nikiforova
    • 2
  • T. L. Kulova
    • 3
  • A. M. Skundin
    • 3
  • A. B. Yaroslavtsev
    • 1
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia
  3. 3.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations