Skip to main content
Log in

Electrochemical Properties of Li2ZnTi3O8/C Nanomaterials

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Li2ZnTi3O8/C nanomaterials are synthesized using the sol-gel method; polyvinylidene fluoride (PVDF) and sucrose are used as carbon sources. The materials are characterized using XRD, TEM, TGA, and Raman spectroscopy. The influence of the carbon precursor and the annealing temperature on the electrochemical properties of the materials is investigated. It has been shown that the addition of both polyvinylidene fluoride and sucrose leads to the formation of nanosized lithium zinc titanate and high conductive carbon. This modification leads to the enhancement of electrochemical properties of the materials; namely, the discharge capacity of Li2ZnTi3O8 and Li2ZnTi3O8/C-5F annealed at 800°C under a current of 20 mA/g are 180 and 227 mA h/g, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Zhao, R. Ran, M. Liu, and Z. Shao, Mater. Sci. Eng. R 98, 1 (2015).

    Article  Google Scholar 

  2. A. B. Yaroslavtsev, T. L. Kulova, and A. M. Skundin, Russ. Chem. Rev. 84, 826 (2015).

    Article  Google Scholar 

  3. Zh. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, and J. Liu, Chem. Rev. 111, 3577 (2011).

    Article  Google Scholar 

  4. Z. S. Hong, M. D. Wei, X. K. Ding, L. L. Jiang, and K. M. Wei, Electrochem. Commun. 12, 720 (2010).

    Article  Google Scholar 

  5. T. Liu, H. Tang, L. Zan, and Zh. J. Tang, Electroanal. Chem. 771, 10 (2016).

    Article  Google Scholar 

  6. L. Wang, L. J. Wu, Z. H. Li, G. T. Lei, Q. Z. Xiao, and P. Zhang, Electrochim. Acta 56, 5343 (2011).

    Article  Google Scholar 

  7. L. Wang, B. Chen, Zh. Meng, B. Luo, X. Wang, and Y. Zhao, Electrochim. Acta 188, 135 (2016).

    Article  Google Scholar 

  8. H. Tang, J. Zhu, Zh. Tang, and Ch. J. Ma, Electroanal. Chem. 731, 60 (2014).

    Article  Google Scholar 

  9. G.-N. Zhu, C.-X. Wang, and Y.-Y. J. Xia, Electrochem. Soc. 158, A102 (2011).

    Article  Google Scholar 

  10. H. Tang and Zh. J. Tang, Alloys Compd. 613, 267 (2014).

    Article  Google Scholar 

  11. H. Tang, L. Zan, W. Mao, and Zh. J. Tang, Electroanal. Chem. 751, 57 (2015).

    Article  Google Scholar 

  12. Ch. Chen, Ch. Ai, X. Liu, Y. He, and Y. J. Wu, Alloys Compd. 698, 692 (2017).

    Article  Google Scholar 

  13. X. Han, Z. Zhao, Y. Xu, D. Liu, H. Zhang, and C. Zhao, RSC Adv. 4, 41968 (2014).

    Article  Google Scholar 

  14. D. Gryzlov, S. Novikova, T. Kulova, A. Skundin, and A. Yaroslavtsev, Mater. Des. 104, 95 (2016).

    Article  Google Scholar 

  15. S. Krishna Kumar, S. Ghosh, P. Ghosal, and S. K. Martha, J. Power Sources 356, 115 (2017).

    Article  Google Scholar 

  16. T. Nakajima, V. Gupta, Y. Ohzawa, M. Koh, R. N. Singh, A. Tressaud, and E. Durand, J. Power Sources 104, 108 (2002).

    Article  Google Scholar 

  17. P. A. Nikiforova, I. A. Stenina, T. L. Kulova, A. M. Skundin, and A. B. Yaroslavtsev, Inorg. Mater. 52 (11), 1137 (2016).

    Article  Google Scholar 

  18. J. D. Wilcox, M. M. Doeff, M. Marcinek, and R. Kostecki, J. Electrochem. Soc. 154, A389 (2007).

    Article  Google Scholar 

  19. F. Tuinstra and J. L. J. Koenig, Chem. Phys. 53, 1126 (1970).

    Google Scholar 

  20. I. A. Stenina, S. S. Bukalov, T. L. Kulova, A. M. Skundin, N. Yu. Tabachkova, and A. B. Yaroslavtsev, Nanotechnol. Russ. 10, 865 (2015).

    Article  Google Scholar 

  21. Zh. Zhu, F. Cheng, and J. Chen, J. Mater. Chem. A 9484 (2013).

    Google Scholar 

  22. Z. Zheng, Y. Wang, A. Zhang, T. Zhang, F. Cheng, Zh. Tao, and J. Chen, J. Power Sources 198, 229 (2012).

    Article  Google Scholar 

  23. Yu. Xu, Zh. Hong, L. Xia, J. Yang, and M. Wei, Electrochim. Acta 88, 74 (2013).

    Article  Google Scholar 

  24. I. A. Stenina, T. L. Kulova, A. M. Skundin, and A. B. Yaroslavtsev, Mater. Res. Bull. 75, 178 (2016).

    Article  Google Scholar 

  25. W. J. H. Borghols, M. Wagemaker, U. Lafont, E. M. Kelde, and F. M. Mulder, J. Am. Chem. Soc. 131, 17786 (2009).

    Article  Google Scholar 

  26. I. A. Stenina, A. N. Sobolev, A. A. Kuz’mina, T. L. Kulova, A. M. Skundin, N. Yu. Tabachkova, and A. B. Yaroslavtsev, Inorg. Mater. 53, 1039 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Stenina.

Additional information

Original Russian Text © I.A. Stenina, P.A. Nikiforova, T.L. Kulova, A.M. Skundin, A.B. Yaroslavtsev, 2017, published in Rossiiskie Nanotekhnologii, 2017, Vol. 12, Nos. 11–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stenina, I.A., Nikiforova, P.A., Kulova, T.L. et al. Electrochemical Properties of Li2ZnTi3O8/C Nanomaterials. Nanotechnol Russia 12, 605–612 (2017). https://doi.org/10.1134/S1995078017060118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078017060118

Navigation