Nanotechnologies in Russia

, Volume 12, Issue 11–12, pp 613–619 | Cite as

ZnO Nanoparticle Modification by Polyethylenimine for Biomolecule Conjugation

  • M. A. ShiryaevEmail author
  • Y. J. Jin
  • H. Ch. Bong
  • A. Baranov


This study aims to find a way for the creation of polyethyleneimine-modified biofunctionalized zinc oxide (ZnO) nanoparticles, stable in phosphate buffered saline (PBS). Biofunctionalized ZnO nanoparticles are promising for bioanalitycal applications due to a combination of diverse physico-chemical ZnO properties and selectivity of biomolecules. ZnO nanoparticles were synthesized in diethylene glycol media at 150°C. Different strategies were utilized for ZnO nanoparticle modification in order to disclose the role of polyethylenimine (PEI) in stability of colloidal system. Synthesized and modified ZnO nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and infrared spectroscopy measurements, and stability of colloidal system was investigated using DLS data. Finally, ability of ZnO nanoparticles to attach proteins for potential analytical applications was proved using Bradford protein assay. Among different strategies of modification, ZnO nanoparticles modified by trisodium citrate, PEI and glutaraldehyde (GA) have showed the best stability in PBS while preserving low aggregation level and high positive surface charge.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. K. Arya, S. Saha, J. E. Ramirez-Vick, V. Gupta, S. Bhansali, and S. P. Singh, Anal. Chim. Acta 737, 1 (2012). doi 10.1016/j.aca.2012.05.048CrossRefGoogle Scholar
  2. 2.
    G. J. Evtyugin, Anal. Chem. 66, 1029 (2011). doi 10.1134/S1061934811110062CrossRefGoogle Scholar
  3. 3.
    A. M. Kumar, S. Jung, and T. Ji, Sensors 11, 5087 (2011). doi 10.3390/s110505087CrossRefGoogle Scholar
  4. 4.
    M. Rahman, A. Ahammad, J. H. Jin, S. J. Ahn, and J. J. Lee, Sensors 10, 4855 (2010). doi 10.3390/s100504855CrossRefGoogle Scholar
  5. 5.
    M. Chen and M. Yin, Prog. Polym. Sci. 39, 365 (2014). doi 10.1016/j.progpolymsci.2013.11.001CrossRefGoogle Scholar
  6. 6.
    K. Kikuchi, Chem. Soc. Rev. 39, 2048 (2010). doi 10.1039/b819316aCrossRefGoogle Scholar
  7. 7.
    N. L. Rosi and C. A. Mirkin, Chem. Rev. 105, 1547 (2005). doi 10.1021/cr030067fCrossRefGoogle Scholar
  8. 8.
    P. Sharma, S. Brown, G. Walter, S. Santra, and B. Moudgil, Adv. Colloid Interfaces 123, 471 (2006) doi 2006.05.026CrossRefGoogle Scholar
  9. 9.
    M. A. Vetten, C. S. Yah, T. Singh, and M. Gulumian, Nanomed.-Nanotechnol. 10, 1391 (2014).CrossRefGoogle Scholar
  10. 10.
    P. Zrazhevskiy, M. Sena, and X. Gao, Chem. Soc. Rev. 39, 4326 (2010). doi 10.1039/b915139gCrossRefGoogle Scholar
  11. 11.
    J. F. Zhou, J. Ralston, R. Sedev, and D. A. Beattie, J. Colloid Interface Sci. 331, 251 (2009). doi 10.1016/j.jcis.2008.12.002CrossRefGoogle Scholar
  12. 12.
    W. Yu and H. Xie, J. Nanomater. 2012, 435873 (2012).Google Scholar
  13. 13.
    J. Roh, H. N. Umh, J. Sim, S. Park, J. Yi, and Y. Kim, J. Korean Chem. Eng. Sci. 30, 671 (2013).CrossRefGoogle Scholar
  14. 14.
    K. Ujiie, N. Kanayama, K. Asai, M. Kishimoto, Y. Ohara, Y. Akashi, K. Yamada, S. Hashimoto, T. Oda, N. Ohkohchi, H. Yanagihara, E. Kita, M. Yamaguchi, H. Fujii, and Y. Nagasaki, Colloid Surf. B 88, 771 (2011).CrossRefGoogle Scholar
  15. 15.
    P. Bihari, M. Vippola, S. Schultes, M. Praetner, A. G. Khandoga, C. A. Reichel, C. Coester, T. Tuomi, M. Rehberg, and F. Krombach, Part. Fibre Toxicol. 5, 14 (2008). doi 10.1186/1743-8977-5-14CrossRefGoogle Scholar
  16. 16.
    M. Zhu, H. Wang, A. A. Keller, T. Wang, and F. Li, Sci. Total Environ. 487, 375 (2014). doi 10.1016/j.scitotenv. 2014.04.036CrossRefGoogle Scholar
  17. 17.
    S. M. Yu, A. Laromaine, and A. Roig, J. Nanopart. Res. 16, 2484 (2014). doi 10.1007/s11051-014-2484-1CrossRefGoogle Scholar
  18. 18.
    R. Gopikrishnan, K. Zhang, P. Ravichandran, S. Baluchamy, V. Ramesh, S. Biradar, P. Ramesh, J. Pradhan, J. Hall, A. Pradhan, and G. Ramesh, Nano-Micro Lett. 2, 31 (2010). doi 10.1007/BF03353614CrossRefGoogle Scholar
  19. 19.
    L. H. Zhao, J. Zhang, and S. Q. Sun, J. Lumin. 132, 2595 (2012). doi 10.1016/j.jlumin.2012.04.028CrossRefGoogle Scholar
  20. 20.
    L. H. Zhao, R. Zhang, J. Zhang, and S. Q. Sun, CrystEngComm 14, 945 (2012). doi 10.1039/C1CE05621BCrossRefGoogle Scholar
  21. 21.
    M. Ahmad, C. Pan, Z. Luo, and J. Zhu, J. Phys. Chem. C 114, 9308 (2010). doi 10.1021/jp102505gCrossRefGoogle Scholar
  22. 22.
    X. Chu, X. Zhu, Y. Dong, T. Chen, M. Ye, and W. Sun, J. Electroanal. Chem. 676, 20 (2012). doi 10.1016/j.jelechem. 2012.04.009CrossRefGoogle Scholar
  23. 23.
    Z. Yang, Z. Ye, B. Zhao, X. Zong, and P. Wang, Phys. E (Amsterdam, Neth.) 42, 1830 (2010).CrossRefGoogle Scholar
  24. 24.
    B. Gu, C. Xu, G. Zhu, S. Liu, L. Chen, X. Li, J. Phys. Chem. B 113, 377 (2009). doi 10.1021/jp808001cCrossRefGoogle Scholar
  25. 25.
    J. Zhao, D. Wu, and J. Zhi, Bioelectrochem. 75, 44 (2009).CrossRefGoogle Scholar
  26. 26.
    M. Negahdary, A. Asadi, S. Mehrtashfar, M. Imandar, H. Akbari-Dastjerdi, F. Salahi, A. Jamaleddini, and M. Ajdary, Int. J. Electrochem. Sci. 7, 5185 (2012).Google Scholar
  27. 27.
    A. Umar, M. Rahman, M. Vaseem, and Y. B. Hahn, Electrochem. Commun. 11, 118 (2009). doi 10.1016/j.elecom. 2008.10.046CrossRefGoogle Scholar
  28. 28.
    Z. Ibupoto, N. Jamal, K. Khun, and M. Willander, Sens. Actuators, B 166, 809 (2012). doi 10.1016/j.snb.2012.03.083CrossRefGoogle Scholar
  29. 29.
    D. Kwon, J. Park, J. Park, S. Y. Choi, and T. H. Yoon, Int. J. Nanomed. 9, 57 (2014).Google Scholar
  30. 30.
    H. J. Zhang, H. M. Xiong, Q. G. Ren, Y. Y. Xia, and J. L. Kong, J. Mater. Chem. 22, 13159 (2012). doi 10.1039/c2jm30855jCrossRefGoogle Scholar
  31. 31.
    S. Chakraborti, A. K. Mandal, S. Sarwar, P. Singh, R. Chakraborty, and P. Chakrabarti, Colloids Surf., B 121, 44 (2014). doi 10.1016/j.colsurfb.2014.03.044CrossRefGoogle Scholar
  32. 32.
    S. Chakraborti, P. Joshi, D. Chakravarty, V. Shanker, Z. Ansari, S. P. Singh, and P. Chakrabarti, Langmuir 28, 11142 (2012). doi 10.1021/la3007603CrossRefGoogle Scholar
  33. 33.
    F. Q. Tang, T. Uchikoshi, and Y. Sakka, J. Am. Ceram. Soc. 85, 2161 (2002). doi 10.1111/j.1151-2916.2002.tb00428.xCrossRefGoogle Scholar
  34. 34.
    C. Tian, B. Mao, E. Wang, Z. Kang, Y. Song, C. Wang, and S. Li, J. Phys. Chem. C 111, 3651 (2007). doi 10.1021/jp067077fCrossRefGoogle Scholar
  35. 35.
    E. W. Seelig, B. Tang, A. Yamilov, H. Cao, and R. P. H. Chang, Mater. Chem. Phys. 80, 257 (2003). doi 10.1016/S0254-0584(02)00492-3CrossRefGoogle Scholar
  36. 36.
    J. Jung and S. Lim, Appl. Surf. Sci. 265, 24 (2013). doi 10.1016/j.apsusc.2012.10.069CrossRefGoogle Scholar
  37. 37.
    S. Krishnamoorthy, T. Bei, E. Zoumakis, G. P. Chrousos, and A. A. Iliadis, Biosens. Bioelectron. 22, 707 (2006). doi 10.1016/j.bios.2006.02.020CrossRefGoogle Scholar
  38. 38.
    R. Schneider, L. Balan, and F. Aldeek, in Nanomaterials, Ed. by M. Rahman (InTech, Croatia, 2011), p.27.Google Scholar
  39. 39.
    P. Joshi, Z. Ansari, S. P. Singh, and V. Shanker, Adv. Sci. Lett. 2, 360 (2009). doi 10.1166/asl.2009.1043CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. A. Shiryaev
    • 1
    Email author
  • Y. J. Jin
    • 2
  • H. Ch. Bong
    • 2
  • A. Baranov
    • 1
  1. 1.Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Korea Research Institute of Bioscience and BiotechnologyEoeun-dong, Yuseong-gu, DaejeonKorea

Personalised recommendations