Skip to main content
Log in

Transformations of Ethanol on Catalysts Based on Nanoporous Calcium Aluminate–Mayenite (Ca12Al14O33) and Mayenite Doped by Copper

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Catalytic properties of nondoped and copper-doped Mayenite have been studied. During ethanol conversion and ethanol steam reforming, the initial Mayenite and specimens containing 0.58 and 0.92 wt % of copper have been analyzed. All catalysts are active in both processes. The influence of the ethanol/water mole ratio on product distribution has been studied. In the course of experiments, the fact of reversible hydrogen sorption has been detected upon the thermal treatment of catalysts containing copper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Q. Lu and X. S. Zhao, “Nanoporous materials: an overview,” in Nanoporous Materials: Science and Engineering, Vol. 4 of Series on Chemical Engineering (Imperial College Press, UK, 2004), pp. 1–12.

    Chapter  Google Scholar 

  2. S. Yang, J. N. Kondo, K. Hayashi, M. Hirano, K. Domen, and H. Hosono, “Formation and desorption of oxygen species in nanoporous crystal 12CaO × 7Al2O3,” Chem. Mater. 16, 104–110 (2004).

    Article  Google Scholar 

  3. D. S. Tsvetkov, A. S. Steparuk, and A. Yu. Zuev, “Defect structure and related properties of mayenite Ca12Al14O33,” Solid State Ionics 276, 142–148 (2015).

    Article  Google Scholar 

  4. A. S. Tolkacheva, S. N. Shkerin, I. V. Korzun, S. G. Titova, O. M. Fedorova, and D. P. Ordinartsev, “High-temperature boundary of existence of mayenite structure,” Fazovye Perekhody, Uporyadochennye Sostoyan. Nov. Mater., No. 5, 1–8 (2011).

    Google Scholar 

  5. A. S. Tolkacheva, S. N. Shkerin, I. V. Korzun, S. V. Plaksin, V. R. Khrustov, and D. P. Ordinartsev, “Phase transition in mayenite Ca12Al14O33,” Russ. J. Inorg. Chem. 57, 1014–1018 (2012).

    Article  Google Scholar 

  6. M. Teusner, R. A. de Souza, H. Krause, S. G. Ebbinghaus, and M. Martin, “Oxygen transport in undoped and doped mayenite,” Solid State Ionics 284, 25–27 (2016).

    Article  Google Scholar 

  7. M. Lacerda, J. T. S. Irvine, F. P. Glasser, and A. R. West, “High oxide ion conductivity in Ca12Al14O33,” Nature (London, U. K.) 332, 525–526 (1988).

    Article  Google Scholar 

  8. C. Li, D. Hirabayashi, and K. Suzuki, “A crucial role of O- 2 and O2- 2 on mayenite structure for biomass tar steam reforming over Ni/ Ca12Al14O33,” Appl. Catal., B 88, 351–360 (2009).

    Article  Google Scholar 

  9. K. Sato, S. Fujita, K. Suzuki, and T. Mori, “High performance of Ni-substituted calcium aluminosilicate for partial oxidation of methane into syngas,” Catal. Commun. 8, 1735–1738 (2007).

    Article  Google Scholar 

  10. C. Dang, H. Yu, H. Wang, F. Peng, and Y. Yang, “A bifunctional Co–CaO–Ca12Al14O33 catalyst for sorption-enhanced steam reforming of glycerol to highpurity hydrogen,” Chem. Eng. J. 286, 329–338 (2016).

    Article  Google Scholar 

  11. I. Zamboni, C. Courson, D. Niznansky, and A. Kiennemann, “Simultaneous catalytic H2 production and CO2 capture in steam reforming of toluene as tar model compound from biomass gasification,” Appl. Catal., B 145, 63–72 (2014).

    Article  Google Scholar 

  12. M. R. Cesário, B. S. Barros, C. Courson, D. M. A. Melo, and A. Kiennemann, “Catalytic performances of Ni–CaO-mayenite in CO2 sorption enhanced steam methane reforming,” Fuel Proc. Technol. 131, 247–253 (2015).

    Article  Google Scholar 

  13. A. di Carlo, D. Borello, M. Sisinni, E. Savuto, P. Venturini, E. Bocci, and K. Kuramoto, “Reforming of tar contained in a raw fuel gas from biomass gasification using nickel-mayenite catalyst,” Int. J. Hydrogen Energy 40, 9088–9095 (2015).

    Article  Google Scholar 

  14. C. Li, D. Hirabayashi, and K. Suzuki, “Development of new nickel based catalyst for biomass tar steam reforming producing H2 rich syngas,” Fuel Processing Technol. 90, 790–796 (2009).

    Article  Google Scholar 

  15. A. Proto, R. Cucciniello, A. Genga, and C. Capacchione, “A study on the catalytic hydrogenation of aldehydes using mayenite as active support for palladium,” Catal. Commun. 68, 41–45 (2015).

    Article  Google Scholar 

  16. A. S. Tolkacheva, S. N. Shkerin, E. G. Kalinina, I. E. Filatov, and A. P. Safronov, “Ceramics with mayenite structure: molecular sieve for helium gas,” Russ. J. Appl. Chem. 87, 536–538 (2014).

    Article  Google Scholar 

  17. K. Suzuki, “Application to catalyst of mayenite consisting of ubiquitous elements,” Trans. JWRI 39, 281–283 (2010).

    Google Scholar 

  18. I. Rossetti, M. Compagnoni, and M. Torli, “Process simulation and optimization of H2 production from ethanol steam reforming and its use in fuel cells. 2. Process analysis and optimization,” Chem. Eng. J. 281, 1036–1044 (2015).

    Article  Google Scholar 

  19. A. Hedayati, O. le Corre, B. Lacarrière, and J. Llorca, “Dynamic simulation of pure hydrogen production via ethanol steam reforming in a catalytic membrane reactor,” Energy 117, 316–324 (2016).

    Article  Google Scholar 

  20. A. Hedayati, O. le Corre, B. Lacarriere, and J. Llorca, “Experimental and exergy evaluation of ethanol catalytic steam reforming in a membrane reactor,” Catal. Today 268, 68–78 (2016).

    Article  Google Scholar 

  21. I. A. Stenina, E. Yu. Safronova, A. V. Levchenko, Yu. A. Dobrovol’skii, and A. B. Yaroslavtsev, “Lowtemperature fuel cells: outlook for application in energy storage systems and materials for their development,” Therm. Eng. 63, 385–398 (2016).

    Article  Google Scholar 

  22. E. Yu. Mironova, M. M. Ermilova, N. V. Orekhova, D. N. Muraviev, and A. B. Yaroslavtsev, “Production of high purity hydrogen by ethanol steam reforming in membrane reactor,” Catal. Today 236, 64–69 (2014).

    Article  Google Scholar 

  23. V. Palma, F. Castaldo, P. Ciambelli, G. Iaquaniello, and G. Capitani, “On the activity of bimetallic catalysts for ethanol steam reforming,” Int. J. Hydrogen Energy 38, 6633–6645 (2013).

    Article  Google Scholar 

  24. P. Osorio-Vargas, N. A. Flores-González, R. M. Navarro, J. L. G. Fierro, C. H. Campos, and P. Reyes, “Improved stability of Ni/Al2O3 catalysts by effect of promoters (La2O3, CeO2) for ethanol steam-reforming reaction,” Catal. Today 259, 27–38 (2015).

    Article  Google Scholar 

  25. R. González-Gil, C. Herrera, M. A. Larrubia, F. Mariño, M. Laborde, and L. J. Alemany, “Hydrogen production by ethanol steam reforming over multimetallic RhCeNi/Al2O3 structured catalyst. Pilot-scale study,” Int. J. Hydrogen Energy 41, 16786–16796 (2016).

    Article  Google Scholar 

  26. G. Pourcelly, “Membranes for low and medium temperature fuel cells. State-of-the-art and new trends,” Pet. Chem. 51, 480–491 (2011).

    Article  Google Scholar 

  27. N. L. Basov, M. M. Ermilova, N. V. Orekhova, and A. B. Yaroslavtsev, “Membrane catalysis in the dehydrogenation and hydrogen production processes,” Russ. Chem. Rev. 82, 352–368 (2013).

    Article  Google Scholar 

  28. A.-S. Kyriakides, L. Rodriguez-Garcia, S. Voutetakis, D. Ipsakis, P. Seferlis, and S. Papadopoulou, “Enhancement of pure hydrogen production through the use of a membrane reactor," Int. J. Hydrogen Energy 39, 4749–4760 (2014).

    Article  Google Scholar 

  29. P. Lopez, G. Mondragon-Galicia, M. E. Espinosa-Pesqueira, D. Mendoza-Anaya, M. E. Fernandez, A. Gomez-Cortes, J. Bonifacio, G. Martinez-Barrera, and R. Perez-Hernandez, “Hydrogen production from oxidative steam reforming of methanol: effect of the Cu and Ni impregnation on ZrO2 and their molecular simulation studies,” Int. J. Hydrogen Energy 37, 9018–9027 (2012).

    Article  Google Scholar 

  30. L. Marra, P. F. Wolbers, F. Gallucci, and M. van Sint Annaland, “Development of a RhZrO2 catalyst for low temperature autothermal reforming of methane in membrane reactors,” Catal. Today 236, 23–33 (2014).

    Article  Google Scholar 

  31. Y. Ni and Z. Sun, “Recent progress on industrial fermentative production of acetone-butanol-ethanol by clostridium acetobutylicum in china,” Appl. Microbiol. Biotechnol. 83, 415–423 (2009).

    Article  Google Scholar 

  32. L. Costa Sousa, S. P. Chundawat, V. Balan, and B. E. Dale, “‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies,” Curr. Opin. Biotechnol. 20, 339–347 (2009).

    Article  Google Scholar 

  33. E. Green, “Fermentative production of butanol—the industrial perspective,” Curr. Opin. Biotechnol. 22, 337–343 (2011).

    Article  Google Scholar 

  34. L. Wang and H. Z. Chen, “Increased fermentability of enzymatically hydrolyzed steam-exploded corn stover for butanol production by removal of fermentation inhibitors,” Process Biochem. 46, 604–607 (2011).

    Article  Google Scholar 

  35. A. G. Merzhanov, “Theory and practice of SHS: worldwide state of the art and the newest results,” Int. J. SHS 2, 113–158 (1993).

    Google Scholar 

  36. A. S. Tolkacheva, S. N. Shkerin, S. V. Plaksin, E. G. Vovkotrub, K. M. Bulanin, V. A. Kochedykov, D. P. Ordinartsev, O. I. Gyrdasova, and N. G. Molchanova, “Synthesis of dense ceramics of single-phase mayenite (Ca12Al14O32)O,” Russ. J. Appl. Chem. 84, 907–911 (2011).

    Article  Google Scholar 

  37. W. Bussem and A. Eitel, “The structure of pentacalcium trialuminate,” Z. Krist. 95, 175 (1936).

    Google Scholar 

  38. J. Huang, L. Valenzano, and G. Sant, “Framework and channel modifications in mayenite (12CaO × 7Al2O3) nanocages by cationic doping,” Chem. Mater. 27, 4731–4741 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Mironova.

Additional information

Original Russian Text © E.Yu. Mironova, M.M. Ermilova, N.V. Orekhova, A.S. Tolkacheva, S.N. Shkerin, A.B. Yaroslavtsev, 2017, published in Rossiiskie Nanotekhnologii, 2017, Vol. 12, Nos. 11–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironova, E.Y., Ermilova, M.M., Orekhova, N.V. et al. Transformations of Ethanol on Catalysts Based on Nanoporous Calcium Aluminate–Mayenite (Ca12Al14O33) and Mayenite Doped by Copper. Nanotechnol Russia 12, 597–604 (2017). https://doi.org/10.1134/S1995078017060064

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078017060064

Navigation