Nanotechnologies in Russia

, Volume 12, Issue 11–12, pp 597–604 | Cite as

Transformations of Ethanol on Catalysts Based on Nanoporous Calcium Aluminate–Mayenite (Ca12Al14O33) and Mayenite Doped by Copper

  • E. Yu. Mironova
  • M. M. Ermilova
  • N. V. Orekhova
  • A. S. Tolkacheva
  • S. N. Shkerin
  • A. B. Yaroslavtsev
Article
  • 6 Downloads

Abstract

Catalytic properties of nondoped and copper-doped Mayenite have been studied. During ethanol conversion and ethanol steam reforming, the initial Mayenite and specimens containing 0.58 and 0.92 wt % of copper have been analyzed. All catalysts are active in both processes. The influence of the ethanol/water mole ratio on product distribution has been studied. In the course of experiments, the fact of reversible hydrogen sorption has been detected upon the thermal treatment of catalysts containing copper.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Q. Lu and X. S. Zhao, “Nanoporous materials: an overview,” in Nanoporous Materials: Science and Engineering, Vol. 4 of Series on Chemical Engineering (Imperial College Press, UK, 2004), pp. 1–12.CrossRefGoogle Scholar
  2. 2.
    S. Yang, J. N. Kondo, K. Hayashi, M. Hirano, K. Domen, and H. Hosono, “Formation and desorption of oxygen species in nanoporous crystal 12CaO × 7Al2O3,” Chem. Mater. 16, 104–110 (2004).CrossRefGoogle Scholar
  3. 3.
    D. S. Tsvetkov, A. S. Steparuk, and A. Yu. Zuev, “Defect structure and related properties of mayenite Ca12Al14O33,” Solid State Ionics 276, 142–148 (2015).CrossRefGoogle Scholar
  4. 4.
    A. S. Tolkacheva, S. N. Shkerin, I. V. Korzun, S. G. Titova, O. M. Fedorova, and D. P. Ordinartsev, “High-temperature boundary of existence of mayenite structure,” Fazovye Perekhody, Uporyadochennye Sostoyan. Nov. Mater., No. 5, 1–8 (2011).Google Scholar
  5. 5.
    A. S. Tolkacheva, S. N. Shkerin, I. V. Korzun, S. V. Plaksin, V. R. Khrustov, and D. P. Ordinartsev, “Phase transition in mayenite Ca12Al14O33,” Russ. J. Inorg. Chem. 57, 1014–1018 (2012).CrossRefGoogle Scholar
  6. 6.
    M. Teusner, R. A. de Souza, H. Krause, S. G. Ebbinghaus, and M. Martin, “Oxygen transport in undoped and doped mayenite,” Solid State Ionics 284, 25–27 (2016).CrossRefGoogle Scholar
  7. 7.
    M. Lacerda, J. T. S. Irvine, F. P. Glasser, and A. R. West, “High oxide ion conductivity in Ca12Al14O33,” Nature (London, U. K.) 332, 525–526 (1988).CrossRefGoogle Scholar
  8. 8.
    C. Li, D. Hirabayashi, and K. Suzuki, “A crucial role of O- 2 and O2- 2 on mayenite structure for biomass tar steam reforming over Ni/ Ca12Al14O33,” Appl. Catal., B 88, 351–360 (2009).CrossRefGoogle Scholar
  9. 9.
    K. Sato, S. Fujita, K. Suzuki, and T. Mori, “High performance of Ni-substituted calcium aluminosilicate for partial oxidation of methane into syngas,” Catal. Commun. 8, 1735–1738 (2007).CrossRefGoogle Scholar
  10. 10.
    C. Dang, H. Yu, H. Wang, F. Peng, and Y. Yang, “A bifunctional Co–CaO–Ca12Al14O33 catalyst for sorption-enhanced steam reforming of glycerol to highpurity hydrogen,” Chem. Eng. J. 286, 329–338 (2016).CrossRefGoogle Scholar
  11. 11.
    I. Zamboni, C. Courson, D. Niznansky, and A. Kiennemann, “Simultaneous catalytic H2 production and CO2 capture in steam reforming of toluene as tar model compound from biomass gasification,” Appl. Catal., B 145, 63–72 (2014).CrossRefGoogle Scholar
  12. 12.
    M. R. Cesário, B. S. Barros, C. Courson, D. M. A. Melo, and A. Kiennemann, “Catalytic performances of Ni–CaO-mayenite in CO2 sorption enhanced steam methane reforming,” Fuel Proc. Technol. 131, 247–253 (2015).CrossRefGoogle Scholar
  13. 13.
    A. di Carlo, D. Borello, M. Sisinni, E. Savuto, P. Venturini, E. Bocci, and K. Kuramoto, “Reforming of tar contained in a raw fuel gas from biomass gasification using nickel-mayenite catalyst,” Int. J. Hydrogen Energy 40, 9088–9095 (2015).CrossRefGoogle Scholar
  14. 14.
    C. Li, D. Hirabayashi, and K. Suzuki, “Development of new nickel based catalyst for biomass tar steam reforming producing H2 rich syngas,” Fuel Processing Technol. 90, 790–796 (2009).CrossRefGoogle Scholar
  15. 15.
    A. Proto, R. Cucciniello, A. Genga, and C. Capacchione, “A study on the catalytic hydrogenation of aldehydes using mayenite as active support for palladium,” Catal. Commun. 68, 41–45 (2015).CrossRefGoogle Scholar
  16. 16.
    A. S. Tolkacheva, S. N. Shkerin, E. G. Kalinina, I. E. Filatov, and A. P. Safronov, “Ceramics with mayenite structure: molecular sieve for helium gas,” Russ. J. Appl. Chem. 87, 536–538 (2014).CrossRefGoogle Scholar
  17. 17.
    K. Suzuki, “Application to catalyst of mayenite consisting of ubiquitous elements,” Trans. JWRI 39, 281–283 (2010).Google Scholar
  18. 18.
    I. Rossetti, M. Compagnoni, and M. Torli, “Process simulation and optimization of H2 production from ethanol steam reforming and its use in fuel cells. 2. Process analysis and optimization,” Chem. Eng. J. 281, 1036–1044 (2015).CrossRefGoogle Scholar
  19. 19.
    A. Hedayati, O. le Corre, B. Lacarrière, and J. Llorca, “Dynamic simulation of pure hydrogen production via ethanol steam reforming in a catalytic membrane reactor,” Energy 117, 316–324 (2016).CrossRefGoogle Scholar
  20. 20.
    A. Hedayati, O. le Corre, B. Lacarriere, and J. Llorca, “Experimental and exergy evaluation of ethanol catalytic steam reforming in a membrane reactor,” Catal. Today 268, 68–78 (2016).CrossRefGoogle Scholar
  21. 21.
    I. A. Stenina, E. Yu. Safronova, A. V. Levchenko, Yu. A. Dobrovol’skii, and A. B. Yaroslavtsev, “Lowtemperature fuel cells: outlook for application in energy storage systems and materials for their development,” Therm. Eng. 63, 385–398 (2016).CrossRefGoogle Scholar
  22. 22.
    E. Yu. Mironova, M. M. Ermilova, N. V. Orekhova, D. N. Muraviev, and A. B. Yaroslavtsev, “Production of high purity hydrogen by ethanol steam reforming in membrane reactor,” Catal. Today 236, 64–69 (2014).CrossRefGoogle Scholar
  23. 23.
    V. Palma, F. Castaldo, P. Ciambelli, G. Iaquaniello, and G. Capitani, “On the activity of bimetallic catalysts for ethanol steam reforming,” Int. J. Hydrogen Energy 38, 6633–6645 (2013).CrossRefGoogle Scholar
  24. 24.
    P. Osorio-Vargas, N. A. Flores-González, R. M. Navarro, J. L. G. Fierro, C. H. Campos, and P. Reyes, “Improved stability of Ni/Al2O3 catalysts by effect of promoters (La2O3, CeO2) for ethanol steam-reforming reaction,” Catal. Today 259, 27–38 (2015).CrossRefGoogle Scholar
  25. 25.
    R. González-Gil, C. Herrera, M. A. Larrubia, F. Mariño, M. Laborde, and L. J. Alemany, “Hydrogen production by ethanol steam reforming over multimetallic RhCeNi/Al2O3 structured catalyst. Pilot-scale study,” Int. J. Hydrogen Energy 41, 16786–16796 (2016).CrossRefGoogle Scholar
  26. 26.
    G. Pourcelly, “Membranes for low and medium temperature fuel cells. State-of-the-art and new trends,” Pet. Chem. 51, 480–491 (2011).CrossRefGoogle Scholar
  27. 27.
    N. L. Basov, M. M. Ermilova, N. V. Orekhova, and A. B. Yaroslavtsev, “Membrane catalysis in the dehydrogenation and hydrogen production processes,” Russ. Chem. Rev. 82, 352–368 (2013).CrossRefGoogle Scholar
  28. 28.
    A.-S. Kyriakides, L. Rodriguez-Garcia, S. Voutetakis, D. Ipsakis, P. Seferlis, and S. Papadopoulou, “Enhancement of pure hydrogen production through the use of a membrane reactor," Int. J. Hydrogen Energy 39, 4749–4760 (2014).CrossRefGoogle Scholar
  29. 29.
    P. Lopez, G. Mondragon-Galicia, M. E. Espinosa-Pesqueira, D. Mendoza-Anaya, M. E. Fernandez, A. Gomez-Cortes, J. Bonifacio, G. Martinez-Barrera, and R. Perez-Hernandez, “Hydrogen production from oxidative steam reforming of methanol: effect of the Cu and Ni impregnation on ZrO2 and their molecular simulation studies,” Int. J. Hydrogen Energy 37, 9018–9027 (2012).CrossRefGoogle Scholar
  30. 30.
    L. Marra, P. F. Wolbers, F. Gallucci, and M. van Sint Annaland, “Development of a RhZrO2 catalyst for low temperature autothermal reforming of methane in membrane reactors,” Catal. Today 236, 23–33 (2014).CrossRefGoogle Scholar
  31. 31.
    Y. Ni and Z. Sun, “Recent progress on industrial fermentative production of acetone-butanol-ethanol by clostridium acetobutylicum in china,” Appl. Microbiol. Biotechnol. 83, 415–423 (2009).CrossRefGoogle Scholar
  32. 32.
    L. Costa Sousa, S. P. Chundawat, V. Balan, and B. E. Dale, “‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies,” Curr. Opin. Biotechnol. 20, 339–347 (2009).CrossRefGoogle Scholar
  33. 33.
    E. Green, “Fermentative production of butanol—the industrial perspective,” Curr. Opin. Biotechnol. 22, 337–343 (2011).CrossRefGoogle Scholar
  34. 34.
    L. Wang and H. Z. Chen, “Increased fermentability of enzymatically hydrolyzed steam-exploded corn stover for butanol production by removal of fermentation inhibitors,” Process Biochem. 46, 604–607 (2011).CrossRefGoogle Scholar
  35. 35.
    A. G. Merzhanov, “Theory and practice of SHS: worldwide state of the art and the newest results,” Int. J. SHS 2, 113–158 (1993).Google Scholar
  36. 36.
    A. S. Tolkacheva, S. N. Shkerin, S. V. Plaksin, E. G. Vovkotrub, K. M. Bulanin, V. A. Kochedykov, D. P. Ordinartsev, O. I. Gyrdasova, and N. G. Molchanova, “Synthesis of dense ceramics of single-phase mayenite (Ca12Al14O32)O,” Russ. J. Appl. Chem. 84, 907–911 (2011).CrossRefGoogle Scholar
  37. 37.
    W. Bussem and A. Eitel, “The structure of pentacalcium trialuminate,” Z. Krist. 95, 175 (1936).Google Scholar
  38. 38.
    J. Huang, L. Valenzano, and G. Sant, “Framework and channel modifications in mayenite (12CaO × 7Al2O3) nanocages by cationic doping,” Chem. Mater. 27, 4731–4741 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. Yu. Mironova
    • 1
  • M. M. Ermilova
    • 1
  • N. V. Orekhova
    • 1
  • A. S. Tolkacheva
    • 2
    • 3
  • S. N. Shkerin
    • 2
  • A. B. Yaroslavtsev
    • 1
    • 4
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.Institute of High Temperature Electrochemistry, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  3. 3.Institute of New Materials and TechnologiesUral Federal UniversityYekaterinburgRussia
  4. 4.Kurnakov Institute of General and Inorganic ChemistryMoscowRussia

Personalised recommendations