Advertisement

Nanotechnologies in Russia

, Volume 12, Issue 11–12, pp 627–634 | Cite as

Effect of Filler Concentration and Film Thickness on Structure and Optical Properties of Poly(p-Xylylene)−Cadmium Sulphide Nanocomposites

  • O. P. Ivanova
  • E. P. Krinichnaya
  • S. A. Zavyalov
  • T. S. Zhuravleva
Article
  • 41 Downloads

Abstract

The effect of filler concentration (C ≈ 0–100 vol %) and film thickness (d ≈ 0.02, 0.2, 0.5, and 1.0 μm) on the optical absorption spectra and surface morphology of thin nanocomposite films based on poly(p-xylylene) and cadmium sulphide (PPX–CdS) has been studied. The PPX–CdS films are prepared by low-temperature vapor deposition polimerization on quartz and silicon substrates. A nonmonotonic dependence of the absorption spectrum red shift on the filler concentration is revealed. The red shift of the spectrum reaches a maximum at some critical concentration of the filler C0. It is observed that the value of the critical concentration C0 increases with the film thickness and equals C0 ≈ 11, 30, and 50 vol % for d ≈ 0.02, 0.5, and 1 μm, correspondingly. The average size of the nanoparticles is evaluated by an analysis of the absorption spectra (via estimating the exciton-peak wavelength). It is found that the shift in the absorption spectra is determined by a variation in the nanoparticle size. Atomic force microscopy reveals the effect of the filler content on the surface morphology of the polymer matrix in nanocomposite films and their surface roughness. The size distribution of the polymeric grains is evaluated. The most significant changes in the absorption spectra and surface morpology of the composites with a variation in the filler content are observed in the filler concentration range from 0 to C0. The absorption spectra of the composites with the filler concentration above C0 are similar, which can be attributed to the almost equal nanoparticle size in these nanocomposites. The correlation between changes in the matrix morphology and filler optical properties is established.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. N. Chvalun, A. V. Pebalk, E. I. Grigor’ev, V. I. Fel’dman, and T. S. Zhuravleva, “Development of creation bases of new optically active nanustructured polymer and composite materials,” Ross. Nanotekhnol. 3 (5–6), 51–54 (2008).Google Scholar
  2. 2.
    E. I. Grigor’ev, S. A. Zav’yalov, and S. N. Chvalun, “VDP—synthesis (vapor deposition polymerization) of poly (p-xylylene) / metal (semiconductor) nanocomposite materials for chemical sensors,” Ross. Nanotekhnol. 1 (1–2), 58–70 (2006).Google Scholar
  3. 3.
    A. V. Gusev, K. A. Mailyan, A. V. Pebalk, I. A. Ryzhikov, and S. N. Chvalun, “Prospects for the application of nanostructured polymer and nanocomposite films based on poly-p-xylylene for micro-, opto-, and nanoelectronics,” J. Commun. Technol. Electron. 54, 833 (2009).CrossRefGoogle Scholar
  4. 4.
    L. I. Trakhtenberg, G. N. Gerasimov, and E. I. Grigor’ev, “Nanoclusters of metals and semiconductors in polymeric matrices: synthesis, structure, and physicochemical properties,” Russ. J. Phys. Chem. A 73, 209 (1999).Google Scholar
  5. 5.
    Yu. D. Tret’yakov and E. A. Gudilin, “Key trends in basic and application-oriented research on nanomaterials,” Russ. Chem. Rev. 78, 801 (2009).CrossRefGoogle Scholar
  6. 6.
    I. V. Klimenko, E. P. Krinichnaya, T. S. Zhuravleva, S. A. Zav’yalov, E. I. Grigor’ev, I. A. Misurkin, S. V. Titov, and B. A. Loginov, “Polyparaxylylene-CdS nanocomposite films: optical spectra, photoluminescence, and surface topography,” Russ. J. Phys. Chem. A 80, 2041 (2006).CrossRefGoogle Scholar
  7. 7.
    S. A. Zavyalov, E. I. Grigoriev, et al., “Structure and properties of titanium-polymer thin film nanocomposites,” Int. J. Nanosci. 4, 149–161 (2005).CrossRefGoogle Scholar
  8. 8.
    D. R. Streltsov, K. A. Mailyan, A. V. Gusev, et al., “Electrical properties, structure, and surface morphology of poly(p-xylylene) silver nanocomposites synthesized by low-temperature vapor deposition polymerization,” Appl. Phys. A 110, 413–422 (2013).CrossRefGoogle Scholar
  9. 9.
    S. A. Zavyalov, A. N. Pivkina, and J. Schoonman, “Formation and characterization of metal-polymer nanostructured composites,” Solid State Ionics 147, 415–419 (2002).CrossRefGoogle Scholar
  10. 10.
    E. P. Krinichnaya, O. P. Ivanova, S. A. Zavyalov, E. I. Grigoriev, and T. S. Zhuravleva, “Synthesis of poly-p-xylylene + CdS nanocomposites and studing of their surface structure,” J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6, 25 (2012).CrossRefGoogle Scholar
  11. 11.
    L. Katsikas, A. Eychmuller, M. Giersig, and H. Weller, “Discrete excitonic transisions in quantum-sized CdS particles,” Chem. Phys. Lett. 172, 201–204 (1990).CrossRefGoogle Scholar
  12. 12.
    R. N. Nurmukhametov, S. N. Dyadyushkina, K. A. Mailyan, et al., “On the nature of absorption and luminescence centers in poly-n-xylylene film,” Vysokomol. Soedin., Ser. A 33, 1525–1529 (1991).Google Scholar
  13. 13.
    G. S. Wu, X. Y. Yuan, T. Xie, G. C. Xu, L. D. Zhang, and Y. I. Zhuang, “A simple synthesis route to CdS nanomaterials with different morphologies by sonochemical reduction,” Mater. Lett. 58, 794–797 (2004).CrossRefGoogle Scholar
  14. 14.
    S. A. Ozerin, “Synthesis, structure and properties of hybride nanocompositets based on silver, lead sulphide and poly-n-xylylene,” Ph. Dissertation (Enikolopov Inst. Synth. Polymer Mater., Moscow, 2005).Google Scholar
  15. 15.
    A. I. Ekimov and A. A. Onushchenko, “Dimensional quantization of the energy spectrum of electrons in semiconductor microcrystals,” JETP Lett. 40, 1136 (1984).Google Scholar
  16. 16.
    S. A. Zavyalov, A. A. Timofeev, A. N. Pivkina, and J. Schoonman, in Nanostructured Materials: Selected Synthesis Method. Properties and Applications, Ed. by P. Knauth and J. Schoonman (Kluwer Academic, Dordrecht, London, Boston, 2002), pp. 97–112.Google Scholar
  17. 17.
    T. Moss, G. Burrell, and B. Ellis, Semiconductor Opto-Electronics (Butterworth-Heinemann, Oxford, 2013).Google Scholar
  18. 18.
    T. Vossmeyer, L. Katsikas, M. Giersig, I. G. Popovic, et al., “CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift,” J. Phys. Chem. 98, 7665–7673 (1994).CrossRefGoogle Scholar
  19. 19.
    V. I. Roldugin, “Quantum-size colloid metal systems,” Russ. Chem. Rev. 69, 821 (2000).CrossRefGoogle Scholar
  20. 20.
    R. F. Khairutdinov, “Chemistry of semiconductor nanoparticles,” Russ. Chem. Rev. 67, 109 (1998).CrossRefGoogle Scholar
  21. 21.
    Y. Wang and N. Herron, “Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties,” J. Phys. Chem. 95, 525–532 (1991).CrossRefGoogle Scholar
  22. 22.
    A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271, 933–937 (1996).CrossRefGoogle Scholar
  23. 23.
    S. A. Zav’yalov, I. Skhounman, E. N. Golubeva, A. V. Lobanov, A. N. Pivkina, and R. V. Gainutdinov, “Component cross effect and structure of thin-film nano-composites based on a poly-p-xylylene matrix,” Ross. Nanotekhnol. 2 (3–4), 101–108 (2007).Google Scholar
  24. 24.
    D. R. Streltsov, K. A. Mailyan, A. V. Gusev, et al., “Structure and optical properties of thin poly(pxylylene)∼ silver nanocomposite films prepared by lowtemperature vapor deposition polymerization,” Polymer 71, 60–69 (2015).CrossRefGoogle Scholar
  25. 25.
    S. A. Ozerin, S. A. Zav’yalov, and S. N. Chvalun, “Synthesis, structure, and properties of metal–polymer nanocomposites based on silver and poly-p-xylylene,” Polymer Sci., Ser. A 43, 1171 (2001).Google Scholar
  26. 26.
    S. A. Ozerin, E. V. Kireeva, E. I. Grigor’ev, G. N. Gerasimov, and S. N. Chvalun, “Structure of nanocomposites based on lead sulfide and poly-p-xylylene,” Polymer Sci., Ser. A 49, 809 (2007).CrossRefGoogle Scholar
  27. 27.
    S. A. Zav’yalov, L. Yu. Kupriyanov, A. N. Pivkina, and I. Skhounman, “The microstructure of and charge transfer in thin films based on metal-polymer nanocomposites,” Russ. J. Phys. Chem. A 80, 1461 (2006).CrossRefGoogle Scholar
  28. 28.
    I. A. Boginskaya, A. V. Gusev, K. A. Mailyan, S. N. Ozerin, A. V. Pebalk, I. A. Ryzhikov, M. V. Sedova, and S. N. Chvalun, “Structure of and electric conduction in metal-polymer poly-para-xylylene–Ag nanocomposite films,” J. Commun. Technol. Electron. 56, 66 (2011).CrossRefGoogle Scholar
  29. 29.
    A. S. Vorokh and A. A. Rempel’, “Disordered structure and shape of cadmium sulfide (CdS) nanoparticles,” Dokl. Akad. Nauk 413, 743–746 (2007).Google Scholar
  30. 30.
    A. S. Vorokh, N. S. Kozhevnikova, and A. A. Rempel, “Transition of the CdS disordered structure to the wurtzite structure with an increase in the nanoparticle size,” Bull. Russ. Acad. Sci.: Phys. 72, 1395 (2008).CrossRefGoogle Scholar
  31. 31.
    N. S. Kozhevnikova, A. S. Vorokh, and A. A. Uritskaya, “Cadmium sulfide nanoparticles prepared by chemical bath deposition,” Russ. Chem. Rev. 84, 225 (2015).CrossRefGoogle Scholar
  32. 32.
    P. V. Morozov, E. I. Grigor’ev, S. A. Zav’yalov, and S. N. Chvalun, “Rectification effect in poly-p-xylylene–cadmium sulfide graded nanocomposites,” Phys. Solid State 54, 2291 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • O. P. Ivanova
    • 1
  • E. P. Krinichnaya
    • 1
  • S. A. Zavyalov
    • 2
  • T. S. Zhuravleva
    • 1
  1. 1.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.National Research Center Kurchatov InstituteMoscowRussia

Personalised recommendations