Advertisement

Nanotechnologies in Russia

, Volume 12, Issue 11–12, pp 589–596 | Cite as

Study of Adsorption and Interaction of H2, O2, and CO on the Surface of Single Gold Nanoparticles and Nickel by Scanning Tunneling Microscopy

  • M. V. Grishin
  • A. K. Gatin
  • S. Yu. Sarvadii
  • B. R. Shub
Article
  • 16 Downloads

Abstract

Using scanning tunneling microscopy, we have studied the processes of adsorption and interaction of hydrogen, oxygen, and carbon monoxide on the surface of gold nanoparticles and nickel that form singleand bicomponent coatings on graphite. On the gold nanoparticles, the interaction of H2 and CO results in the formation of formyl radicals (HCO•) that get adsorbed on the substrate and are able then to oxidize with oxygen to water and CO2. Nickel nanoparticles coated with an oxide are reduced after sequential exposure to hydrogen and CO. As is established, on a bicomponent gold–nickel coating, the interaction of hydrogen and carbon monoxide also leads to the formation of adsorbed formyl radicals.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. E. Barnett, G. W. Dembinski, and J. H. Sinfelt, “Isomerization process utilizing a gold-palladium alloy in the catalyst,” US Patent No. 3442973 (1969).Google Scholar
  2. 2.
    J. H. Sinflet, Bimetallic Catatysts. Discovers, Concepts, and Applications (Wiley, New York, 1983).Google Scholar
  3. 3.
    W. M. H. Sachtler, Le Vide 163, 19 (1979).Google Scholar
  4. 4.
    S. N. Augustine and W. M. H. Sachler, J. Phys. Chem. 91, 5953 (1987).CrossRefGoogle Scholar
  5. 5.
    Y. Y. Huang and W. M. H. Sachtler, J. Catal. 188, 215 (1999).CrossRefGoogle Scholar
  6. 6.
    M. Bonarovska, A. Malinowski, and Z. Karpinski, Appl. Catal., A 188, 145 (1999).CrossRefGoogle Scholar
  7. 7.
    A. E. Barnett, J. L. Carter, and J. H. Sinfelt, “Inhibition of hydrogenolysis,” US Patent No. 3617518 (1971).Google Scholar
  8. 8.
    G. Diaz, A. Gomezcortes, and M. Benaisa, Catal. Lett. 38, 63 (1996).CrossRefGoogle Scholar
  9. 9.
    V. V. Smirnov, S. N. Lanin, A. Yu. Vasil’kov, S. A. Nikolaev, G. P. Murav’eva, L. A. Tyurina, and E. V. Vlasenko, Russ. Chem. Bull. 54, 2286 (2005).CrossRefGoogle Scholar
  10. 10.
    M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, Chem. Lett., 405 (1987).Google Scholar
  11. 11.
    O. G. Ellert, M. V. Tsodikov, S. A. Nikolaev, and V.M. Novotortsev, Russ. Chem. Rev. 83, 718 (2014).CrossRefGoogle Scholar
  12. 12.
    S. A. Nikolaev, V. V. Smirnov, A. Yu. Vasil’kov, and V. L. Podshibikhin, Kinet. Catal. 51, 375 (2010).CrossRefGoogle Scholar
  13. 13.
    S. A. Nikolaev, N. A. Permyakov, V. V. Smirnov, A. Yu. Vasil’kov, and S. N. Lanin, Kinet. Catal. 51, 288 (2010).CrossRefGoogle Scholar
  14. 14.
    P. Lakshmanan, P. P. Upare, N.-T. Le, Y. K. Hwang, D. W. Hwang, U.-H. Lee, H. R. Kim, and J.-S. Chang, Appl. Catal., A 468, 260 (2013).CrossRefGoogle Scholar
  15. 15.
    S. A. Nikolaev, A. V. Chistyakov, M. V. Chudakova, V. V. Kriventsov, E. P. Yakimchuk, and M. V. Tsodikov, J. Catal. 297, 296 (2013).CrossRefGoogle Scholar
  16. 16.
    I. L. Simakova, Yu. S. Solkina, B. L. Moroz, O. A. Simakova, S. I. Reshetnikov, I. P. Prosvirin, V. I. Bukhtiyarov, V. N. Parmon, and D. Yu. Murzin, Appl. Catal., A 385, 136 (2010).CrossRefGoogle Scholar
  17. 17.
    V. V. Smirnov, S. A. Nikolaev, G. P. Murav’eva, L. A. Tyurina, and A. Yu. Vasil’kov, Kinet. Catal. 48, 265 (2007).CrossRefGoogle Scholar
  18. 18.
    Y. Zhang, W. Chu, A. D. Foroushani, H. Wang, D. Li, J. Liu, C. J. Barrow, X. Wang, and W. Yang, Materials 7, 5169 (2014).CrossRefGoogle Scholar
  19. 19.
    L. A. Dykman and N. G. Khlebtsov, Acta Nat. 3 (2), 36 (2011).Google Scholar
  20. 20.
    J.-S. Lee, Gold Bull. 43, 189 (2010).CrossRefGoogle Scholar
  21. 21.
    A. K. Gatin, M. V. Grishin, S. A. Gurevich, N. V. Dokhlikova, A. A. Kirsankin, V. M. Kozhevin, E. S. Lokteva, T. N. Rostovshchikova, S. Yu. Sarvadii, B. R. Shub, and D. A. Yavsin, Nanotechnol. Russ. 10, 850 (2015).CrossRefGoogle Scholar
  22. 22.
    A. K. Gatin, M. V. Grishin, S. A. Gurevich, N. V. Dokhlikova, A. A. Kirsankin, V. M. Kozhevin, E. S. Lokteva, T. N. Rostovshchikova, S. Yu. Sarvadii, B. R. Shub, and D. A. Yavsin, Russ. Chem. Bull. 64, 2337 (2015).CrossRefGoogle Scholar
  23. 23.
    E. S. Lokteva, A. A. Peristyy, N. E. Kavalerskaya, E. V. Golubina, L. V. Yashina, T. N. Rostovshchikova, S. A. Gurevich, V. M. Kozhevin, D. A. Yavsin, and V. V. Lunin, Pure Appl. Chem. 84, 495 (2012).CrossRefGoogle Scholar
  24. 24.
    N. E. Kavalerskaya, E. S. Lokteva, T. N. Rostovshchikova, E. V. Golubina, and K. I. Maslakov, Kinet. Catal. 54, 597 (2013).CrossRefGoogle Scholar
  25. 25.
    V. I. Bukhtiyarov and M. G. Slin’ko, Russ. Chem. Rev. 70, 147 (2001).CrossRefGoogle Scholar
  26. 26.
    S. A. Nikolaev, E. V. Golubina, L. M. Kustov, A. L. Tarasov, and O. P. Tkachenko, Kinet. Catal. 55, 311 (2014).CrossRefGoogle Scholar
  27. 27.
    Z. Gai, J. Y. Howe, J. Guo, D. A. Blom, E. W. Plummer, and J. Shen, Appl. Phys. Lett. 86, 023107 (2005).CrossRefGoogle Scholar
  28. 28.
    H. I. Abbott, A. Aumer, Y. Lei, C. Asokan, R. J. Meyer, M. Sterrer, S. Shaikhutdinov, and H.-J. Freund, J. Phys. Chem. C 114, 17099 (2010).CrossRefGoogle Scholar
  29. 29.
    E. Napetschnig, M. Schmid, and P. Varga, Surf. Sci. 601, 3233 (2007).CrossRefGoogle Scholar
  30. 30.
    A. K. Santra, F. Yang, and D. W. Goodman, Surf. Sci. 548, 324 (2004).CrossRefGoogle Scholar
  31. 31.
    J. B. Park, J. S. Ratliff, S. Ma, and D. A. Chen, Surf. Sci. 600, 2913 (2006).CrossRefGoogle Scholar
  32. 32.
    R. J. Davies, M. Bowker, P. R. Davies, and D. J. Morgan, Nanoscale 5, 9018 (2013).CrossRefGoogle Scholar
  33. 33.
    A. K. Gatin, M. V. Grishin, S. A. Gurevich, N. V. Dokhlikova, A. A. Kirsankin, V. M. Kozhevin, N. N. Kolchenko, T. N. Rostovshchikova, V. A. Kharitonov, B. R. Shub, and D. A. Yavsin, Russ. Chem. Bull. 63, 1696 (2014).CrossRefGoogle Scholar
  34. 34.
    M. V. Grishin, A. K. Gatin, N. V. Dokhlikova, A. A. Kirsankin, A. I. Kulak, S. A. Nikolaev, and B. R. Shub, Kinet. Catal. 56, 532 (2015).CrossRefGoogle Scholar
  35. 35.
    N. V. Dokhlikova, N. N. Kolchenko, M. V. Grishin, A. K. Gatin, and B. R. Shub, Nanotechnol. Russ. 11, 735 (2016).CrossRefGoogle Scholar
  36. 36.
    Scanning Tunnelling Microscopy I. General Principles and Applications to Clean and Absorbate-Covered Surfaces, Ed. by H.-J. Guntherodt and R. Wiesendanger (Springer, Berlin, 1994).Google Scholar
  37. 37.
    G. Binnig, H. Rohrer, C. Berber, and E. Weibel, Appl. Phys. Lett. 40, 178 (1981).CrossRefGoogle Scholar
  38. 38.
    E. Meyer, H. J. Hug, and R. Bennewitz, Scanning Probe Microscopy (Springer, Berlin, 2004).CrossRefGoogle Scholar
  39. 39.
    R. J. Hamers and Y. J. Wang, Chem. Rev. 96, 1261 (1996).CrossRefGoogle Scholar
  40. 40.
    R. J. Hamers, R. M. Tromp, and J. E. Demuth, Phys. Rev. Lett. 56, 1972 (1986).CrossRefGoogle Scholar
  41. 41.
    A. K. Gatin, M. V. Grishin, F. I. Dalidchik, S. A. Kovalevskii, and N. N. Kolchenko, Khim. Fiz. 25 (6), 17 (2006).Google Scholar
  42. 42.
    M. M. Wohar and P. W. Jagodzinski, J. Mol. Spectrosc. 148, 13 (1991).CrossRefGoogle Scholar
  43. 43.
    M. Rothaemel, H. W. Zanthoff, and M. Baerns, Catal. Lett. 28, 321 (1994).CrossRefGoogle Scholar
  44. 44.
    F. Davar, Z. Fereshteh, and M. Salavati-Niasari, J. Alloys Compd. 476, 797 (2009).CrossRefGoogle Scholar
  45. 45.
    P. Azadi, J. Otomo, H. Hatano, Y. Oshima, and R. Farnood, Chem. Eng. Sci. 66, 4196 (2011).CrossRefGoogle Scholar
  46. 46.
    S. Dmitriev, Int. J. Smart Sensing Intell. Syst. 3, 807 (2010).CrossRefGoogle Scholar
  47. 47.
    S. Kovalevskii, F. Dalidchik, M. Grishin, N. Kolchenko, and B. Shub, Appl. Phys. A 66, S125 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. V. Grishin
    • 1
  • A. K. Gatin
    • 1
  • S. Yu. Sarvadii
    • 1
  • B. R. Shub
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations