Nanotechnologies in Russia

, Volume 12, Issue 11–12, pp 658–666 | Cite as

Biosensor Based on Screen-Printed Electrode and Glucose-Oxidase Modified with the Addition of Single-Walled Carbon Nanotubes and Thermoexpanded Graphite

  • V. A. Arlyapov
  • S. S. Kamanin
  • O. A. Kamanina
  • A. N. Reshetilov


The modification of an electrode produced by a matrix printing head with the use of glucose oxidase (GOD), single-walled carbon nanotubes (SWCNTs), and thermoexpanded graphite (TEG) has been studied. During glucose oxidation, modification by SWCNTs leads to the effect of direct electron transfer. Both nanomaterials increase the magnitude of the sensitivity coefficient (SC) from 0.11 to 0.24 mA M–1 in the case of glucose oxidase–and ferrocene-based electrodes when modification is done with the addition of TEG and up to 0.62 mA M–1 when modification is done with the addition of SWCNTs. A comparison of the characteristics of the biosensors with ferrocene and nanomaterials with those of the mediator-free biosensors based on SWCNTs and GOD shows that the biosensor provides higher sensitivity detection; the magnitude of sensitivity coefficient is 1.5 mA M–1. The higher magnitude of the SC can be explained by the occurrence of more effective electron transfer from active centers of the enzyme to the electrode. Voltammetric measurements demonstrate that electron transfer in a mediator-free biosensor is not complicated by a chemical reaction and is carried out under the control of diffusion factors. After testing the mediator-free biosensor in practice, it is possible to talk about the applicability of such a biosensor in detecting glucose in different environments, including the fermentation industry.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. N. Reshetilov, “Biosensors and biofuel cells: research focused on practical application (review),” Appl. Biochem. Microbiol. 51, 264 (2015).CrossRefGoogle Scholar
  2. 2.
    P. Mehrotra, “Biosensors and their applications— a review,” J. Oral Biol. Craniofacial Res. 6, 153–159 (2016).CrossRefGoogle Scholar
  3. 3.
    C. I. L. Justino, A. C. Freitas, R. Pereira, and A. C. Duarte, “Recent developments in recognition elements for chemical sensors and biosensors,” Trends Anal. Chem. 68, 2–17 (2015).CrossRefGoogle Scholar
  4. 4.
    A. Hayat and J. L. Marty, “Disposable screen printed electrochemical sensors: tools for environmental monitoring,” Sensors 14, 10432–10453 (2014).CrossRefGoogle Scholar
  5. 5.
    S. S. Kamanin, V. A. Arlyapov, T. V. Rogova, and A. N. Reshetilov, “Modified screen-printed electrodes based on novel organosilicon sol-gel matrix-immobilized glucose oxidase for glucose detection,” Biotekhnol. 2, 80–87 (2014).Google Scholar
  6. 6.
    B. R. Crulhas, N. P. Ramos, C. R. Basso, V. E. Coste, G. R. Castro, and V. Pedrosa, “A fabrication and characterization of ferrocenece containing hydrogel for glucose biosensor application,” Int. J. Electrochem. Sci. 9, 7596–7604 (2014).Google Scholar
  7. 7.
    A. Attar, M. E. Ghica, A. Amine, and C. M. A. Brett, “Poly(neutral red) based hydrogen peroxide biosensor for chromium determination by inhibition measurements,” J. Hazard. Mater. 279, 348–355 (2014).CrossRefGoogle Scholar
  8. 8.
    B. Hill, “Electrochemistry for diabetes management,” Curr. Sep. 21, (2), 45–48 (2005).Google Scholar
  9. 9.
    A. Bonanni, A. H. Loo, and M. Pumera, “Graphene for impedimetric biosensing,” Trends Anal. Chem. 37, 12–21 (2012).CrossRefGoogle Scholar
  10. 10.
    A. Alessandrini and P. Facci, “Electron transfer in nanobiodevices,” Eur. Polym. J. 83, 450–466 (2016).CrossRefGoogle Scholar
  11. 11.
    B. K. Shrestha, R. Ahmad, H. M. Mousa, I.-G. Kim, J. I. Kim, M. P. Neupane, C. H. Park, and C. S. Kim, “High-performance glucose biosensor based on chitosan-glucose oxidase immobilized polypyrrole/ nafion/functionalized multi-walled carbon nanotubes bio-nanohybrid film,” J. Colloid Interface Sci. 482, 39–47 (2016).CrossRefGoogle Scholar
  12. 12.
    S. Gupta, C. R. Prabha, and C. N. Murthy, “Functionalized multi-walled carbon nanotubes/polyvinyl alcohol membrane coated glassy carbon electrode for efficient enzyme immobilization and glucose sensing,” J. Environ. Chem. Eng. 4, 3734–3740 (2016).CrossRefGoogle Scholar
  13. 13.
    N. S. Rogaleva, L. V. Shkotova, O. V. L’vova, V. V. Garbuz, V. B. Muratov, T. I. Duda, O. O. Vasil’ev, Ya. I. Korpan, and O. A. Biloivan, “Amperometric biosensor modified with multiwalled carbon nanotubes for glucose determination,” Biotechnol. Acta 5, 53–61 (2012).Google Scholar
  14. 14.
    S. Kurbanoglu, S. A. Ozkan, and A. Merkoçi, “Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications,” Biosens. Bioelectron. 89, 886–898 (2017).CrossRefGoogle Scholar
  15. 15.
    P. Ramesh and S. Sampath, “A binderless, bulk-modified, renewable surface amperometric sensor for NADH and ethanol,” Anal. Chem. 72, 3369–3373 (2000).CrossRefGoogle Scholar
  16. 16.
    P. Ramesh and S. Sampath, “Electrochemical and spectroscopic characterization of quinone functionalized exfoliated graphite,” Analyst 126, 1872–1877 (2001).CrossRefGoogle Scholar
  17. 17.
    C. Calas-Blanchard, T. Noguer, M. Comtat, S. Mauran, and J.-L. Marty, “Potentialities of expanded natural graphite as a new transducer for NAD+-dependent dehydrogenase amperometric biosensors,” Anal. Chim. Acta 484, 25–31 (2003).CrossRefGoogle Scholar
  18. 18.
    A. N. Reshetilov, A. E. Kitova, V. V. Kolesov, and A. I. Yaropolov, “Mediator-free bioelectrocatalytic oxidation of ethanol on an electrode from thermally expanded graphite modified by gluconobacter oxydans membrane fractions,” Electroanalysis 27, 1443–1448 (2015).CrossRefGoogle Scholar
  19. 19.
    Z. Wang and Z. Dai, “Carbon nanomaterial-based electrochemical biosensors: an overview,” Nanoscale 7, 6420–6431 (2015).CrossRefGoogle Scholar
  20. 20.
    F. Du, L. Zhu, and L. Dai, “Carbon nanotube-based electrochemical biosensors,” in Biosensors Based on Nanomaterials and Nanodevices, Ed. by J. Li and N. Wu (CRC, Boca Raton, FL, 2013), pp. 273–294.Google Scholar
  21. 21.
    P. Das, M. Das, S. Reddy, and P. Goswami, “Recent advances on developing 3rd generation enzyme electrode for biosensor applications,” Biosens. Bioelectron. 79, 386–397 (2016).CrossRefGoogle Scholar
  22. 22.
    B. X. Huang, H.-Y. Kim, and C. Dass, “Probing threedimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry,” J. Am. Soc. Mass Spectrom. 15, 1237–1247 (2004).CrossRefGoogle Scholar
  23. 23.
    S. Libertino et al., “Immobilization of the enzyme glucose oxidase on both bulk and porous SiO2 surfaces,” Sensors 8, 5637–5648 (2008).CrossRefGoogle Scholar
  24. 24.
    B. M. Brena and F. Batista-Viera, “Immobilization of enzymes,” in Methods in Biotechnology: Immobilization of Enzymes and Cells, 2nd ed., Ed. by M. G. J. Totowa (Humana, NJ, 2006), Vol. 14, pp. 15–30.CrossRefGoogle Scholar
  25. 25.
    V. A. Arlyapov, O. A. Ponamoreva, V. A. Alferov, S. V. Alferov, and A. N. Reshetilov, “Application of the low-selective microbial biosensors for the determination of components in multicomponent aqueous solutions,” Sens. Sist. 25, 352–360 (2011).Google Scholar
  26. 26.
    T.-H. Yang, C.-L. Hung, J.-H. Ke, and J.-M. Zen, “An electrochemically preanodized screen-printed carbon electrode for achieving direct electron transfer to glucose oxidase,” Electrochem. Commun. 10, 1094–1097 (2008).CrossRefGoogle Scholar
  27. 27.
    W. Yang, K. R. Ratinac, S. P. Ringer, P. Thordarson, J. J. Gooding, and F. Braet, “Carbon nanomaterials in biosensors: should you use nanotubes or graphene?,” Angew. Chem., Int. Ed. Engl. 49, 2114–2138 (2010).CrossRefGoogle Scholar
  28. 28.
    D. R. Shobha Jeykumari, S. Ramaprabhu, and S. Sriman Narayanan, “A thionine functionalized multiwalled carbon nanotube modified electrode for the determination of hydrogen peroxide,” Carbon 45, 1340–1353 (2007).CrossRefGoogle Scholar
  29. 29.
    I. Tinoco, Jr., K. Sauer, J. C. Wang, J. D. Puglisi, G. Harbison, and D. Rovnyak, “Electrochemistry,” in Physical Chemistry: Principles and Applications in Biological Sciences (Pearson Education, 2014), Chap. 7, pp. 238–263.Google Scholar
  30. 30.
    C. X. Guo and C. M. Li, “Direct electron transfer of glucose oxidase and biosensing of glucose on hollow sphere-nanostructured conducting polymer/metal oxide composite,” Phys. Chem. Chem. Phys. 12, 12153–12159 (2010).CrossRefGoogle Scholar
  31. 31.
    E. Laviron, “General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems,” J. Electroanal. Chem. 101, 19–28 (1979).CrossRefGoogle Scholar
  32. 32.
    C. Cai and J. Chen, “Direct electron transfer of glucose oxidase promoted by carbon nanotubes,” Anal. Biochem. 332, 75–83 (2004).CrossRefGoogle Scholar
  33. 33.
    Z. Wang, S. Liu, P. Wu, and C. Cai, “Detection of glucose based on direct electron transfer reaction of glucose oxidase immobilized on highly ordered polyaniline nanotubes,” Anal. Chem. 81, 1638–1645 (2009).CrossRefGoogle Scholar
  34. 34.
    M. Sharp, M. Petersson, and K. Edstrom, “Preliminary determinations of electron transfer kinetics involving ferrocene covalently attached to a platinum surface,” J. Electroanal. Chem. 95, 123–130 (1979).CrossRefGoogle Scholar
  35. 35.
    S.-F. Wang, T. Chen, Z.-L. Zhang, X.-C. Shen, D.-W. Pang, Z.-X. Lu, and K.-Y. Wong, “Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids,” Langmuir 21, 9260–9266 (2005).CrossRefGoogle Scholar
  36. 36.
    T. C. Gokoglan, S. Soylemez, M. Kesik, I. B. Dogru, O. Tukel, R. Yuksel, H. E. Unalam, and L. Toppare, “A novel approach for the fabrication of a flexible glucose biosensor: the combination of vertically aligned CNTs and a conjugated polymer,” Food Chem. 220, 299–305 (2017).CrossRefGoogle Scholar
  37. 37.
    S. S. Kamanin, V. A. Arlyapov, A. V. Machulin, V. A. Alferov, and A. N. Reshetilov, “Biosensors based on modified screen-printed enzyme electrodes for monitoring of fermentation processes,” Russ. J. Appl. Chem. 88, 463 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. A. Arlyapov
    • 1
  • S. S. Kamanin
    • 1
  • O. A. Kamanina
    • 1
  • A. N. Reshetilov
    • 1
    • 2
  1. 1.Tula State UniversityTulaRussia
  2. 2.Skryabin Institute of Biochemistry and Physiology of MicroorganismsRussian Academy of SciencesMoscow oblastRussia

Personalised recommendations