Advertisement

Nanotechnologies in Russia

, Volume 12, Issue 11–12, pp 577–582 | Cite as

Passivation of Nickel Nanoparticles at Temperatures below 0°C

  • M. I. Alymov
  • N. M. Rubtsov
  • B. S. Seplyarskii
  • V. A. Zelenskii
  • A. B. Ankudinov
  • I. D. Kovalev
  • R. A. Kochetkov
  • A. S. Shchukin
  • E. V. Petrov
  • N. A. Kochetov
Article

Abstract

It has been experimentally demonstrated that, at temperatures below 0°C, nickel nanopowder does not ignite in dry air; however, passivation takes place, thus providing the composition stability of nickel nanoparticles in air at ambient temperature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Tseng and C. Chen, “Dispersion and rheology of nickel nanoparticle inks,” J. Mater. Sci. 41, 1213 (2006).CrossRefGoogle Scholar
  2. 2.
    S. P. Gubin, Y. A. Koksharov, G. B. Khomutov, and G. Y. Yurkov, “Magnetic nanoparticles: preparation, structure and properties,” Russ. Chem. Rev. 74, 489 (2005).CrossRefGoogle Scholar
  3. 3.
    R. Karmhag, T. Tesfamichael, E. Wäckelgård, G. Nikalsson, and M. Nygren, “Oxidation kinetics of nickel particles: comparison between free particles and particles in an oxide matrix,” Solar Energy 68, 329 (2000).CrossRefGoogle Scholar
  4. 4.
    S. Rodriguez-Llamazares, J. Merchan, I. Olmedo, H. P. Marambio, J. P. Munoz, P. Jara, J. C. Sturm, B. Chornik, O. Pena, N. Yutronic, and M. J. Kogan, “Ni/Ni oxides nanoparticles with potential biomedical applications obtained by displacement of a nickelorganometallic complex,” J. Nanosci. Nanotechnol. 8, 3820 (2008).CrossRefGoogle Scholar
  5. 5.
    J. Geng and B. F. G. Johnson, in Nanotechnology in Catalysis, Ed. by B. Zhou, S. Hermans, and G. A. Somorjai (Springer, Berlin, 2004), Vol. 1, p.159.Google Scholar
  6. 6.
    V. Polshettiwar, B. Baruwati, and R. S. Varma, “Nanoparticle-supported and magnetically recoverable nickel catalyst: a robust and economic hydrogenation and transfer hydrogenation protocol,” Green Chem. 11, 127 (2009).CrossRefGoogle Scholar
  7. 7.
    P. Song, D. Wen, Z. X. Guo, and T. Korakianitis, “Oxidation investigation of nickel nanoparticles,” Phys. Chem. Chem. Phys. 10, 5057 (2008).CrossRefGoogle Scholar
  8. 8.
    L. Bai, J. Fan, Y. Cao, F. Yuan, A. Zuo, and Q. Tang, “Shape-controlled synthesis of Ni particles via polyol reduction,” J. Cryst. Growth 311, 2474 (2009).CrossRefGoogle Scholar
  9. 9.
    K. H. Kim, Y. B. Lee, S. G. Lee, H. C. Park, and S. S. Park, “Preparation of fine nickel powders in aqueous solution under wet chemical process,” Mater. Sci. Eng. A 381, 337 (2004).CrossRefGoogle Scholar
  10. 10.
    P. K. Khanna, P. V. More, J. P. Jawalkar, and B. G. Bharate, “Effect of reducing agent on the synthesis of nickel nanoparticles,” Mater. Lett. 63, 1384 (2009).CrossRefGoogle Scholar
  11. 11.
    M. I. Alymov, N. M. Rubtsov, B. S. Seplyarskii, R. A. Kochetkov, V. A. Zelensky, and A. B. Ankudinov, “Features of combustion and passivation of nickel nanoparticles,” Mendeleev Commun. 27 (6) (2017, in press).Google Scholar
  12. 12.
    M. I. Alymov, N. M. Rubtsov, B. S. Seplyarskii, V. A. Zelensky, and A. B. Ankudinov, “Passivation of iron nanoparticles at subzero temperatures,” Mendeleev Commun. 27 (5) (2017, in press).Google Scholar
  13. 13.
    P. G. Fox, J. Ehretsmann, and C. E. Brown, “The development of internal structure during thermal decomposition: nickel formate dihydrate,” J. Catal. 20, 67 (1971).CrossRefGoogle Scholar
  14. 14.
    Ya. B. Zel’dovich, G. I. Barenblatt, and R. A. Sunyaev, Selected Works of Yakov Borisovich Zeldovich, Vol. 1: Chemical Physics and Hydrodynamics (Nauka, Moscow, 1984; Princeton Univ. Press, Princeton, 2014).Google Scholar
  15. 15.
    N. N. Semenov, On Some Problems of Chemical Kinetics and Reaction Ability (Akad. Nauk SSSR, Moscow, 1958) [in Russian].Google Scholar
  16. 16.
    B. Lewis and G. von Elbe, Combustion, Explosions, and Flame in Gases (Academic, New York, London, 1987).Google Scholar
  17. 17.
    T. M. Gorrie, P. W. Kopf, and S. Toby, “The kinetics of the reaction of some pyrophoric metals with oxygen,” J. Phys. Chem. 71, 3842 (1967).CrossRefGoogle Scholar
  18. 18.
    S. M. Repinskii, Introduction to Chemical Physics of Solid Surface (Nauka, Novosibirsk, 1993) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. I. Alymov
    • 1
  • N. M. Rubtsov
    • 1
  • B. S. Seplyarskii
    • 1
  • V. A. Zelenskii
    • 1
    • 2
  • A. B. Ankudinov
    • 2
  • I. D. Kovalev
    • 1
  • R. A. Kochetkov
    • 1
  • A. S. Shchukin
    • 1
  • E. V. Petrov
    • 1
  • N. A. Kochetov
    • 1
  1. 1.Merzhanov Institute of Structural Macrokinetics and Materials ScienceRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia

Personalised recommendations