Skip to main content
Log in

Acid-base and adsorption properties of the AlOOH 2D nanostructures as factors for regulating parameters of model biological solutions

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

We have studied the acid-base, adsorption, and electrokinetic properties of 2D nanostructures—agglomerates of pseudoboehmite (AlOOH) nanosheets 2–5 nm in thickness—that were synthesized from electro-explosive Al/AlN nanopowder. By the example of adsorption of anionic dye eosin and cationic dye methylene blue, it is found that the synthesized nanostructures have pronounced anion-exchange properties. It is shown that agglomerates of AlOOH nanosheets exhibit properties of a weak base when they are added to the biological model solutions (cell-culture medium and sodium phosphate buffer) and deionized water; in this case, an increase in pH in the media takes place both due to the release of the OH groups and the ionexchange adsorption. The possible impact of the synthesized AlOOH 2D nanostructures on the suppression of tumor-cell proliferation is considered via changes in the parameters (acidity and ionic composition) of their microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Mikhaylov, D. Klimpel, N. Schaschke, U. Mikac, M. Vizovisek, M. Fonovic, V. Turk, B. Turk, and O. Vasiljeva, “Selective targeting of tumor and stromal cells by a nanocarrier system displaying lipidated cathepsin B inhibitor,” Angew. Chem. 53, 10077–10081 (2014).

    Article  Google Scholar 

  2. H. Lee, D. Sung, J. Kim, B. T. Kim, T. Wang, S. S. A. An, S. W. Seo, and D. K. Yi, “Silica nanoparticle-based dual imaging colloidal hybrids: cancer cell imaging and biodistribution,” Int. J. Nanomed. 10, 215–225 (2015).

    Article  Google Scholar 

  3. V. A. Oleinikov, A. V. Sukhanova, and I. R. Nabiev, “Fluorescent semiconductor nanocrystals in biology and medicine,” Ross. Nanotekhnol. 2 (1–2), 160–173 (2007).

    Google Scholar 

  4. J. A. Burger, P. Ghia, A. Rosenwald, and F. Caligaris-Cappio, “The microenvironment in mature B-cell malignancies: a target for new treatment strategies,” Blood 114, 3367–3375 (2009).

    Article  Google Scholar 

  5. J. A. Burger, “Targeting the microenvironment in chronic lymphocytic leukemia is changing the therapeutic landscape,” Curr. Opin. Occol. 24, 643–649 (2012).

    Article  Google Scholar 

  6. V. A. Chubenko, “Promising treatments for malignant neoplasms,” Prakt. Onkol. 8 (4), 228–234 (2007).

    Google Scholar 

  7. F. Danhier, O. Feron, and V. Preat, “To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery,” J. Controlled Release 148, 135–146 (2010).

    Article  Google Scholar 

  8. N. Puvvada, S. Rajput, B. N. P. Kumar, S. Sarkar, S. Konar, K. R. Brunt, R. R. Rao, A. Mazumdar, S. K. Das, R. Basu, P. B. Fisher, M. Mandal, and A. Pathak, “Novel ZnO hollow-nanocarriers containing paclitaxel targeting folate-receptors in a malignant pH-microenvironment for effective monitoring and promoting breast tumor regression,” Sci. Rep. 5, 11760 (2015).

    Article  Google Scholar 

  9. I. F. Robey, B. K. Baggett, N. D. Kirkpatrick, D. J. Roe, J. Dosescu, B. F. Sloane, A. I. Hashim, D.L. Morse, N. Raghunand, R. A. Gatenby, and R. J. Gillies, “Bicarbonate increases tumor pH and inhibits spontaneous metastases,” Cancer Res. 69, 2260–2268 (2009).

    Article  Google Scholar 

  10. D. M. Prescott, H. C. Charles, J. M. Poulson, R. L. Page, D. E. Thrall, Z. Vujaskovic, and M. W. Dewhirst, “The relationship between intracellular and extracellular pH in spontaneous canine tumors,” Clin. Cancer Res. 6, 2501–2505 (2000).

    Google Scholar 

  11. R. A. Cardone, V. Casavola, and S. J. Reshkin, “The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis,” Nature Rev. Cancer 5, 786–795 (2005).

    Article  Google Scholar 

  12. T. Ya. Datsko and V. I. Zelentsov, “The dependence of the surface charge of the gamma-aluminium oxide and fluorine adsorption on the solution temperature,” Surf. Eng. Appl. Electrochem. 45, 404 (2009).

    Article  Google Scholar 

  13. Physical and Chemical Aspects of Adsorbents and Catalysts, Ed. by B. G. Linsen (Academic, London, 1970; Mir, Moscow, 1973).

    Google Scholar 

  14. M. I. Lerner, N. V. Svarovskaya, S. G. Psakh’e, and O. V. Bakina, “Production technology, characteristics, and some applicationsof electric-explosion nanopowders of metals,” Nanotechnol. Russ. 4, 741 (2009).

    Article  Google Scholar 

  15. L. K. Gerunova, “Method of aluminium determination in biological objects,” RF Patent No. 2265842, Byull. Izobret. No. 34 (2005).

  16. The Theory and Practice of pH Metric Definition of Acid-Base Properties of the Solid Surface, The School-Book, Ed. by K. V. Ikonnikova, L. F. Ikonnikova, T. S. Minakova, and Yu. S. Sarkisov (Tomsk. Politekh. Univ., Tomsk, 2011) [in Russian].

    Google Scholar 

  17. The Fluorides and Oxides of Alkaline Earth Metals and Magnesium. The Surface Properties, Ed. by T. S. Minakova and I. A. Ekimova (Tomsk. Gos. Univ., Tomsk, 2014) [in Russian].

    Google Scholar 

  18. G. G. Savel’ev, T. A. Yurmazova, A. I. Galanov, S. V. Sizov, N. B. Danilenko, M. I. Lerner, F. Teper, and L. Kaledin, “Adsorption capacity of nanosized fiber aluminium oxide,” Izv. Tomsk. Politekh. Univ. 307, 102–107 (2004).

    Google Scholar 

  19. A. Wittayanukulluk, D. P. Jiang, F. E. Regnier, and S. L. Hem, “Effect of microenvironment pH of aluminum hydroxide adjuvant on the chemical stability of adsorbed antigen,” Vaccine 22, 1172–1176 (2004).

    Article  Google Scholar 

  20. T. Clapp, P. Siebert, D. Chen, and L. Jones Braun, “Vaccines with aluminum-containing adjuvants: optimizing vaccine efficacy and thermal stability,” J. Pharmaceut. Sci. 100, 388 (2011).

    Article  Google Scholar 

  21. C. Amphlett, Inorganic Ion Exchangers (Elsevier, Amsterdam, 1964; Mir, Moscow, 1966).

    Google Scholar 

  22. S. O. Kazantsev, A. N. Fomenko, M. S. Korovin, E. A. Glazkova, A. S. Lozhkomoev, M. I. Lerner, and S. G. Psakhie, “Cytotoxicity of oxidation products of al nanoparticles to Neuro-2a and L929 cells,” AIP Conf. Proc. 1683, 020080 (2015).

    Article  Google Scholar 

  23. S. Zhang, J. Li, G. Lykotrafitis, G. Bao, and S. Suresh, “Size-dependent endocytosis of nanoparticles,” Adv. Mater. 21, 419–424 (2009).

    Article  Google Scholar 

  24. W. Jiang, B. Y. Kim, J. T. Rutka, and W. C. Chan, “Nanoparticle-mediated cellular response is sizedependent,” Nature Nanotechnol. 3, 145–150 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Lozhkomoev.

Additional information

Original Russian Text © A.S. Lozhkomoev, S.O. Kazantsev, M.I. Lerner, S.G. Psakhie, 2016, published in Rossiiskie Nanotekhnologii, 2016, Vol. 11, Nos. 7–8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozhkomoev, A.S., Kazantsev, S.O., Lerner, M.I. et al. Acid-base and adsorption properties of the AlOOH 2D nanostructures as factors for regulating parameters of model biological solutions. Nanotechnol Russia 11, 506–511 (2016). https://doi.org/10.1134/S1995078016040108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078016040108

Navigation