Advertisement

Nanotechnologies in Russia

, Volume 11, Issue 7–8, pp 506–511 | Cite as

Acid-base and adsorption properties of the AlOOH 2D nanostructures as factors for regulating parameters of model biological solutions

  • A. S. Lozhkomoev
  • S. O. Kazantsev
  • M. I. Lerner
  • S. G. Psakhie
Article

Abstract

We have studied the acid-base, adsorption, and electrokinetic properties of 2D nanostructures—agglomerates of pseudoboehmite (AlOOH) nanosheets 2–5 nm in thickness—that were synthesized from electro-explosive Al/AlN nanopowder. By the example of adsorption of anionic dye eosin and cationic dye methylene blue, it is found that the synthesized nanostructures have pronounced anion-exchange properties. It is shown that agglomerates of AlOOH nanosheets exhibit properties of a weak base when they are added to the biological model solutions (cell-culture medium and sodium phosphate buffer) and deionized water; in this case, an increase in pH in the media takes place both due to the release of the OH groups and the ionexchange adsorption. The possible impact of the synthesized AlOOH 2D nanostructures on the suppression of tumor-cell proliferation is considered via changes in the parameters (acidity and ionic composition) of their microenvironment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Mikhaylov, D. Klimpel, N. Schaschke, U. Mikac, M. Vizovisek, M. Fonovic, V. Turk, B. Turk, and O. Vasiljeva, “Selective targeting of tumor and stromal cells by a nanocarrier system displaying lipidated cathepsin B inhibitor,” Angew. Chem. 53, 10077–10081 (2014).CrossRefGoogle Scholar
  2. 2.
    H. Lee, D. Sung, J. Kim, B. T. Kim, T. Wang, S. S. A. An, S. W. Seo, and D. K. Yi, “Silica nanoparticle-based dual imaging colloidal hybrids: cancer cell imaging and biodistribution,” Int. J. Nanomed. 10, 215–225 (2015).CrossRefGoogle Scholar
  3. 3.
    V. A. Oleinikov, A. V. Sukhanova, and I. R. Nabiev, “Fluorescent semiconductor nanocrystals in biology and medicine,” Ross. Nanotekhnol. 2 (1–2), 160–173 (2007).Google Scholar
  4. 4.
    J. A. Burger, P. Ghia, A. Rosenwald, and F. Caligaris-Cappio, “The microenvironment in mature B-cell malignancies: a target for new treatment strategies,” Blood 114, 3367–3375 (2009).CrossRefGoogle Scholar
  5. 5.
    J. A. Burger, “Targeting the microenvironment in chronic lymphocytic leukemia is changing the therapeutic landscape,” Curr. Opin. Occol. 24, 643–649 (2012).CrossRefGoogle Scholar
  6. 6.
    V. A. Chubenko, “Promising treatments for malignant neoplasms,” Prakt. Onkol. 8 (4), 228–234 (2007).Google Scholar
  7. 7.
    F. Danhier, O. Feron, and V. Preat, “To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery,” J. Controlled Release 148, 135–146 (2010).CrossRefGoogle Scholar
  8. 8.
    N. Puvvada, S. Rajput, B. N. P. Kumar, S. Sarkar, S. Konar, K. R. Brunt, R. R. Rao, A. Mazumdar, S. K. Das, R. Basu, P. B. Fisher, M. Mandal, and A. Pathak, “Novel ZnO hollow-nanocarriers containing paclitaxel targeting folate-receptors in a malignant pH-microenvironment for effective monitoring and promoting breast tumor regression,” Sci. Rep. 5, 11760 (2015).CrossRefGoogle Scholar
  9. 9.
    I. F. Robey, B. K. Baggett, N. D. Kirkpatrick, D. J. Roe, J. Dosescu, B. F. Sloane, A. I. Hashim, D.L. Morse, N. Raghunand, R. A. Gatenby, and R. J. Gillies, “Bicarbonate increases tumor pH and inhibits spontaneous metastases,” Cancer Res. 69, 2260–2268 (2009).CrossRefGoogle Scholar
  10. 10.
    D. M. Prescott, H. C. Charles, J. M. Poulson, R. L. Page, D. E. Thrall, Z. Vujaskovic, and M. W. Dewhirst, “The relationship between intracellular and extracellular pH in spontaneous canine tumors,” Clin. Cancer Res. 6, 2501–2505 (2000).Google Scholar
  11. 11.
    R. A. Cardone, V. Casavola, and S. J. Reshkin, “The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis,” Nature Rev. Cancer 5, 786–795 (2005).CrossRefGoogle Scholar
  12. 12.
    T. Ya. Datsko and V. I. Zelentsov, “The dependence of the surface charge of the gamma-aluminium oxide and fluorine adsorption on the solution temperature,” Surf. Eng. Appl. Electrochem. 45, 404 (2009).CrossRefGoogle Scholar
  13. 13.
    Physical and Chemical Aspects of Adsorbents and Catalysts, Ed. by B. G. Linsen (Academic, London, 1970; Mir, Moscow, 1973).Google Scholar
  14. 14.
    M. I. Lerner, N. V. Svarovskaya, S. G. Psakh’e, and O. V. Bakina, “Production technology, characteristics, and some applicationsof electric-explosion nanopowders of metals,” Nanotechnol. Russ. 4, 741 (2009).CrossRefGoogle Scholar
  15. 15.
    L. K. Gerunova, “Method of aluminium determination in biological objects,” RF Patent No. 2265842, Byull. Izobret. No. 34 (2005).Google Scholar
  16. 16.
    The Theory and Practice of pH Metric Definition of Acid-Base Properties of the Solid Surface, The School-Book, Ed. by K. V. Ikonnikova, L. F. Ikonnikova, T. S. Minakova, and Yu. S. Sarkisov (Tomsk. Politekh. Univ., Tomsk, 2011) [in Russian].Google Scholar
  17. 17.
    The Fluorides and Oxides of Alkaline Earth Metals and Magnesium. The Surface Properties, Ed. by T. S. Minakova and I. A. Ekimova (Tomsk. Gos. Univ., Tomsk, 2014) [in Russian].Google Scholar
  18. 18.
    G. G. Savel’ev, T. A. Yurmazova, A. I. Galanov, S. V. Sizov, N. B. Danilenko, M. I. Lerner, F. Teper, and L. Kaledin, “Adsorption capacity of nanosized fiber aluminium oxide,” Izv. Tomsk. Politekh. Univ. 307, 102–107 (2004).Google Scholar
  19. 19.
    A. Wittayanukulluk, D. P. Jiang, F. E. Regnier, and S. L. Hem, “Effect of microenvironment pH of aluminum hydroxide adjuvant on the chemical stability of adsorbed antigen,” Vaccine 22, 1172–1176 (2004).CrossRefGoogle Scholar
  20. 20.
    T. Clapp, P. Siebert, D. Chen, and L. Jones Braun, “Vaccines with aluminum-containing adjuvants: optimizing vaccine efficacy and thermal stability,” J. Pharmaceut. Sci. 100, 388 (2011).CrossRefGoogle Scholar
  21. 21.
    C. Amphlett, Inorganic Ion Exchangers (Elsevier, Amsterdam, 1964; Mir, Moscow, 1966).Google Scholar
  22. 22.
    S. O. Kazantsev, A. N. Fomenko, M. S. Korovin, E. A. Glazkova, A. S. Lozhkomoev, M. I. Lerner, and S. G. Psakhie, “Cytotoxicity of oxidation products of al nanoparticles to Neuro-2a and L929 cells,” AIP Conf. Proc. 1683, 020080 (2015).CrossRefGoogle Scholar
  23. 23.
    S. Zhang, J. Li, G. Lykotrafitis, G. Bao, and S. Suresh, “Size-dependent endocytosis of nanoparticles,” Adv. Mater. 21, 419–424 (2009).CrossRefGoogle Scholar
  24. 24.
    W. Jiang, B. Y. Kim, J. T. Rutka, and W. C. Chan, “Nanoparticle-mediated cellular response is sizedependent,” Nature Nanotechnol. 3, 145–150 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. S. Lozhkomoev
    • 1
  • S. O. Kazantsev
    • 1
  • M. I. Lerner
    • 1
  • S. G. Psakhie
    • 1
  1. 1.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations