Advertisement

Nanotechnologies in Russia

, Volume 11, Issue 5–6, pp 331–336 | Cite as

Molecular diodes and negative differential resistances based on polyoxometalates

  • F. I. Dalidchik
  • S. A. Kovalevskii
  • E. M. Balashov
  • B. A. Budanov
Article

Abstract

By measuring the tunnel conductivity of polyoxometalates (POM) and their organic derivatives in experiments with a scanning tunnel microscope (STM), effects have been found which are promising for use in nanoelectronics. Large-scale multiple negative differential resistances (with record peak-to-valley ratios up to 102) have been observed under conditions which do not require low temperatures and high vacuum. The diode properties of organo-polyoxometalate complexes with coefficients of rectification up to 35–40 are revealed. A mechanism of biresonance tunnel electron transport in strong electric fields, which explains the effects, has been developed. A strategy for selecting nanomaterials which can improve the functional properties of molecular electronic elements based on the optimization of the composition and architecture of polyoxometalate complexes has been proposed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Song, M. Reed, and T. Lee, Adv. Mater. 23, 1583 (2011).CrossRefGoogle Scholar
  2. 2.
    J. C. Cuevas and E. Scheer, Molecular Electronics: An Introduction to Theory and Experiment, World Scientific Series in Nanotechnology and Nanoscience (World Scientific, Singapore, 2010).CrossRefGoogle Scholar
  3. 3.
    G. H. Wannier, Rev. Mod. Phys. 34, 645 (1962).CrossRefGoogle Scholar
  4. 4.
    F. I. Dalidchik, B. A. Budanov, N. N. Kolchenko, E. M. Balashov, and S. A. Kovalevskii, J. Exp. Theor. Phys. 115, 1068 (2012).CrossRefGoogle Scholar
  5. 5.
    F. I. Dalidchik, E. M. Balashov, B. A. Budanov, A. K. Gatin, M. V. Grishin, A. A. Kirsankin, S. A. Kovalevskii, N. N. Kolchenko, V. G. Slutskii, and B. R. Shub, Russ. J. Phys. Chem. B 4, 896 (2010).CrossRefGoogle Scholar
  6. 6.
    F. I. Dalidchik, S. A. Kovalevskii, E. M. Balashov, and B. A. Budanov, Kinet. Catal. 58, 610 (2012).CrossRefGoogle Scholar
  7. 7.
    I. K. Song, M. S. Kaba, and M. A. Barteau, J. Phys. Chem. 100, 19577 (1996).CrossRefGoogle Scholar
  8. 8.
    I. K. Song, J. E. Lyons, and M. A. Barteau, Catal. Today 81, 137 (2003).CrossRefGoogle Scholar
  9. 9.
    I. K. Song, M. S. Kaba, and M. A. Barteau, Langmuir 18, 2358 (2002).CrossRefGoogle Scholar
  10. 10.
    I. K. Song, M. S. Kaba, and M. A. Barteau, J. Phys. Chem. 100, 17528 (1996).CrossRefGoogle Scholar
  11. 11.
    A. M. Dykhne, S. Yu. Vasil’ev, O. A. Petrii, A. G. Rudavets, and G. A. Tsirlina, Phys. Dokl. 44, 653 (1999).Google Scholar
  12. 12.
    I. Kovács, J. Phys.: Conf. Ser. 61, 623 (2007).Google Scholar
  13. 13.
    J. Ho. Cho, D. R. Park, S. Park, and I. K. Song, Catal. Lett. 141, 826 (2011).CrossRefGoogle Scholar
  14. 14.
    A. Nisar, X. Xu, S. Shen, S. Hu, and X. Wang, Adv. Funct. Mater 19, 860–865 (2009).CrossRefGoogle Scholar
  15. 15.
    De-Liang Long, R. Tsunashima, and L. Cronin, Angew. Chem. Int. Ed. 49, 1736–1758 (2010).CrossRefGoogle Scholar
  16. 16.
    I. Kratochvilova, M. Kocirik, and A. Zambova, et al., J. Mater. Chem. 12, 2927 (2002).CrossRefGoogle Scholar
  17. 17.
    F. I. Dalidchik, S. A. Kovalevskii, E. M. Balashov, B. A. Budanov, in Proceedings of the 19th International Symposium on Nanophysics and Nanoelectronics, March 10–14, 2015, Nizh. Novgorod, Vol. 1, pp. 250–251.Google Scholar
  18. 18.
    J. Chen, W. Wang, and M. A. Reed, et al., Appl. Phys. Lett. 77, 1224 (2000).CrossRefGoogle Scholar
  19. 19.
    D. M.-T. Kuo and Y. C. Chang, Phys. E: Low-Dim. Syst. Nanostruct. 41, 395 (2009).CrossRefGoogle Scholar
  20. 20.
    F. I. Dalidchik, S. A. Kovalevskii, and B. A. Budanov, Nanotechnol. Russ. 7, 635 (2012).CrossRefGoogle Scholar
  21. 21.
    C. Martin, C. Lamonier, M. Fournier, E. Payen, P. Mentré, V. Harlé, and D. Guillaume, Chem. Mater. 17, 4438–4448 (2005).CrossRefGoogle Scholar
  22. 22.
    S. Yu. Vasil’ev and A. V. Denisov, Tech. Phys. 45, 99 (2000).CrossRefGoogle Scholar
  23. 23.
    E. M. Balashov, B. A. Budanov, F. I. Dalidchik, and S. A. Kovalevskii, JETP Lett. 101, 643 (2015).CrossRefGoogle Scholar
  24. 24.
    A. Aviram and M. A. Ratner, Chem. Phys. Lett. 29, 277–283 (1974).CrossRefGoogle Scholar
  25. 25.
    J. R. Heath and M. A. Ratner, Phys. Today 56 (5), 43–49 (2003).CrossRefGoogle Scholar
  26. 26.
    C. Guo, Z. H. Zhang, G. Kwong, J. B. Pan, X. Q. Deng, J. J. Zhang, J. Phys. Chem. C 116 (23), 12900–12905 (2012).CrossRefGoogle Scholar
  27. 27.
    Shizheng Wen, Guochun Yang, Likai Yan, Haibin Li, and Zhongmin Su, ChemPhysChem 14, 610–617 (2013).CrossRefGoogle Scholar
  28. 28.
    N. Armstrong, R. C. Hoft, A. McDonagh, M. B. Cortie, and M. J. Ford, Nano Lett. 7, 3018 (2007).CrossRefGoogle Scholar
  29. 29.
    L. A. Zotti, T. Kirchner, J. C. Cuevas, F. Pauly, T. Huhn, E. Scheer, and A. Erbe, Small 6, 1529 (2010).CrossRefGoogle Scholar
  30. 30.
    S. A. Kovalevskiy, F. I. Dalidchik, G. V. Nizova, et al., Soft Nanosci. Lett. 4, 24 (2014).CrossRefGoogle Scholar
  31. 31.
    Z. Tang, S. Liu, and E. Wang, S. Dong, and E. Wang, Langmuir 16, 5806 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • F. I. Dalidchik
    • 1
  • S. A. Kovalevskii
    • 1
  • E. M. Balashov
    • 1
  • B. A. Budanov
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations