Skip to main content
Log in

Molecular diodes and negative differential resistances based on polyoxometalates

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

By measuring the tunnel conductivity of polyoxometalates (POM) and their organic derivatives in experiments with a scanning tunnel microscope (STM), effects have been found which are promising for use in nanoelectronics. Large-scale multiple negative differential resistances (with record peak-to-valley ratios up to 102) have been observed under conditions which do not require low temperatures and high vacuum. The diode properties of organo-polyoxometalate complexes with coefficients of rectification up to 35–40 are revealed. A mechanism of biresonance tunnel electron transport in strong electric fields, which explains the effects, has been developed. A strategy for selecting nanomaterials which can improve the functional properties of molecular electronic elements based on the optimization of the composition and architecture of polyoxometalate complexes has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Song, M. Reed, and T. Lee, Adv. Mater. 23, 1583 (2011).

    Article  Google Scholar 

  2. J. C. Cuevas and E. Scheer, Molecular Electronics: An Introduction to Theory and Experiment, World Scientific Series in Nanotechnology and Nanoscience (World Scientific, Singapore, 2010).

    Book  Google Scholar 

  3. G. H. Wannier, Rev. Mod. Phys. 34, 645 (1962).

    Article  Google Scholar 

  4. F. I. Dalidchik, B. A. Budanov, N. N. Kolchenko, E. M. Balashov, and S. A. Kovalevskii, J. Exp. Theor. Phys. 115, 1068 (2012).

    Article  Google Scholar 

  5. F. I. Dalidchik, E. M. Balashov, B. A. Budanov, A. K. Gatin, M. V. Grishin, A. A. Kirsankin, S. A. Kovalevskii, N. N. Kolchenko, V. G. Slutskii, and B. R. Shub, Russ. J. Phys. Chem. B 4, 896 (2010).

    Article  Google Scholar 

  6. F. I. Dalidchik, S. A. Kovalevskii, E. M. Balashov, and B. A. Budanov, Kinet. Catal. 58, 610 (2012).

    Article  Google Scholar 

  7. I. K. Song, M. S. Kaba, and M. A. Barteau, J. Phys. Chem. 100, 19577 (1996).

    Article  Google Scholar 

  8. I. K. Song, J. E. Lyons, and M. A. Barteau, Catal. Today 81, 137 (2003).

    Article  Google Scholar 

  9. I. K. Song, M. S. Kaba, and M. A. Barteau, Langmuir 18, 2358 (2002).

    Article  Google Scholar 

  10. I. K. Song, M. S. Kaba, and M. A. Barteau, J. Phys. Chem. 100, 17528 (1996).

    Article  Google Scholar 

  11. A. M. Dykhne, S. Yu. Vasil’ev, O. A. Petrii, A. G. Rudavets, and G. A. Tsirlina, Phys. Dokl. 44, 653 (1999).

    Google Scholar 

  12. I. Kovács, J. Phys.: Conf. Ser. 61, 623 (2007).

    Google Scholar 

  13. J. Ho. Cho, D. R. Park, S. Park, and I. K. Song, Catal. Lett. 141, 826 (2011).

    Article  Google Scholar 

  14. A. Nisar, X. Xu, S. Shen, S. Hu, and X. Wang, Adv. Funct. Mater 19, 860–865 (2009).

    Article  Google Scholar 

  15. De-Liang Long, R. Tsunashima, and L. Cronin, Angew. Chem. Int. Ed. 49, 1736–1758 (2010).

    Article  Google Scholar 

  16. I. Kratochvilova, M. Kocirik, and A. Zambova, et al., J. Mater. Chem. 12, 2927 (2002).

    Article  Google Scholar 

  17. F. I. Dalidchik, S. A. Kovalevskii, E. M. Balashov, B. A. Budanov, in Proceedings of the 19th International Symposium on Nanophysics and Nanoelectronics, March 10–14, 2015, Nizh. Novgorod, Vol. 1, pp. 250–251.

    Google Scholar 

  18. J. Chen, W. Wang, and M. A. Reed, et al., Appl. Phys. Lett. 77, 1224 (2000).

    Article  Google Scholar 

  19. D. M.-T. Kuo and Y. C. Chang, Phys. E: Low-Dim. Syst. Nanostruct. 41, 395 (2009).

    Article  Google Scholar 

  20. F. I. Dalidchik, S. A. Kovalevskii, and B. A. Budanov, Nanotechnol. Russ. 7, 635 (2012).

    Article  Google Scholar 

  21. C. Martin, C. Lamonier, M. Fournier, E. Payen, P. Mentré, V. Harlé, and D. Guillaume, Chem. Mater. 17, 4438–4448 (2005).

    Article  Google Scholar 

  22. S. Yu. Vasil’ev and A. V. Denisov, Tech. Phys. 45, 99 (2000).

    Article  Google Scholar 

  23. E. M. Balashov, B. A. Budanov, F. I. Dalidchik, and S. A. Kovalevskii, JETP Lett. 101, 643 (2015).

    Article  Google Scholar 

  24. A. Aviram and M. A. Ratner, Chem. Phys. Lett. 29, 277–283 (1974).

    Article  Google Scholar 

  25. J. R. Heath and M. A. Ratner, Phys. Today 56 (5), 43–49 (2003).

    Article  Google Scholar 

  26. C. Guo, Z. H. Zhang, G. Kwong, J. B. Pan, X. Q. Deng, J. J. Zhang, J. Phys. Chem. C 116 (23), 12900–12905 (2012).

    Article  Google Scholar 

  27. Shizheng Wen, Guochun Yang, Likai Yan, Haibin Li, and Zhongmin Su, ChemPhysChem 14, 610–617 (2013).

    Article  Google Scholar 

  28. N. Armstrong, R. C. Hoft, A. McDonagh, M. B. Cortie, and M. J. Ford, Nano Lett. 7, 3018 (2007).

    Article  Google Scholar 

  29. L. A. Zotti, T. Kirchner, J. C. Cuevas, F. Pauly, T. Huhn, E. Scheer, and A. Erbe, Small 6, 1529 (2010).

    Article  Google Scholar 

  30. S. A. Kovalevskiy, F. I. Dalidchik, G. V. Nizova, et al., Soft Nanosci. Lett. 4, 24 (2014).

    Article  Google Scholar 

  31. Z. Tang, S. Liu, and E. Wang, S. Dong, and E. Wang, Langmuir 16, 5806 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Balashov.

Additional information

Original Russian Text © F.I. Dalidchik, S.A. Kovalevskii, E.M. Balashov, B.A. Budanov, 2016, published in Rossiiskie Nanotekhnologii, 2016, Vol. 11, Nos. 5–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalidchik, F.I., Kovalevskii, S.A., Balashov, E.M. et al. Molecular diodes and negative differential resistances based on polyoxometalates. Nanotechnol Russia 11, 331–336 (2016). https://doi.org/10.1134/S1995078016030058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078016030058

Navigation