Nanotechnologies in Russia

, Volume 11, Issue 3–4, pp 128–136 | Cite as

Chemical composition of hybrid silicon nanoparticles and ultrafast dynamics of charge carriers

  • V. O. Kompanets
  • S. V. Chekalin
  • M. A. Lazov
  • N. V. Alov
  • A. M. Ionov
  • S. G. Dorofeev
  • P. Yu. Barzilovich
  • E. A. Ryabov
  • V. N. Bagratashvili
  • S. S. Babkina
  • A. A. Ischenko


The qualitative and quantitative composition of hybrid Si/SiO x /SiO2/OH(D) nanoparticles synthesized from silicon monoxide has been determined by X-ray photoelectron spectroscopy. The nanoparticles are composed of a Si crystalline core and a SiO x /SiO2/OH(D) shell, where SiO x is the interface of intermediate oxides corresponding to the Si1+, Si2+, and Si3+ valence states of silicon and SiO2/OH(D) is the external shell of the nanoparticle. The chemical composition and average stoichiometry of deuterated and nondeuterated nanoparticles have been determined; the identified compositions have been compared. The dependence of photoluminescent properties on the composition of the samples has been discussed. Two forms of hydrophilic silicon nanoparticles with identical crystalline cores—photoluminescent deuteriumpassivated particles oxidized in completely deuterated dimethylsulfoxide and nonphotoluminescent hydrogen- passivated reference samples oxidized in dimethylsulfoxide—have been studied by broadband femtosecond spectroscopy. It has been found that there are significant differences in the ultrafast spectral–temporal induced absorption dynamics of these two forms in the energy range corresponding to the calculated bandgap of the nanoparticles. The observed difference has been attributed to the specific features of the relaxation of excited charge carriers in the energy states responsible for photoluminescence in the red spectral region.


Silicon Nanoparticles Conduction Band Bottom Silicon Monoxide Excited Carrier Deuterated Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. C. Hersam, N. P. Guisinger, and J. W. Lyding, Nanotecnology 11, 70–76 (2000).CrossRefGoogle Scholar
  2. 2.
    J. P. Wilcoxon, G. A. Samara, and P. N. Provencio, Phys. Rev. B 60, 2704–2714 (1999).CrossRefGoogle Scholar
  3. 3.
    V. N. Bagratashvili, S. G. Dorofeev, A. A. Ischenko, N. N. Kononov, V. Ya. Panchenko, A. O. Rybaltovskii, A. P. Sviridov, S. N. Senkov, S. I. Tsypina, V. I. Yusupov, S. A. Yuvchenko, and D. A. Zimnyakov, Laser Phys. Lett. 10, 095901–7 (2013).CrossRefGoogle Scholar
  4. 4.
    O. B. Gusev, A. N. Poddubny, A. A. Prokofiev, and I. N. Yassievich, Semiconductors 47, 183–202 (2013).CrossRefGoogle Scholar
  5. 5.
    V. N. Bagratashvili, S. G. Dorofeev, A. A. Ischenko, V. V. Koltashev, N. N. Kononov, A. O. Rybaltovskii, and G. V. Fetisov, Russ. J. Phys. Chem. B 4, 1164–1170 (2010).CrossRefGoogle Scholar
  6. 6.
    V. Kumar, Nanosilicon, 1st ed. (Elsevier, London, Amsterdam, 2008).Google Scholar
  7. 7.
    A. A. Ischenko, G. V. Fetisov, and L. A. Aslanov, Nanosilicon: Properties, Synthesis, Applications, Methods of Analysis and Control (CRC, Cambridge, UK, 2014).CrossRefGoogle Scholar
  8. 8.
    G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, Phys. Rev. B 62, 15942–15951 (2000).CrossRefGoogle Scholar
  9. 9.
    Y. Kanemitsu, Phys. Rep. 263, 1–91 (1995).CrossRefGoogle Scholar
  10. 10.
    L. T. Canham, Appl. Phys. Lett. 57, 1046–1048 (1990).CrossRefGoogle Scholar
  11. 11.
    M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, Phys. Rev. Lett. 82, 197–200 (1999).CrossRefGoogle Scholar
  12. 12.
    Z. Zhou, L. Brus, and R. Friesner, Nano Lett. 3, 163–167 (2003).CrossRefGoogle Scholar
  13. 13.
    C. Meier and A. Gondorf, S. Lu[uml]ttjohann, A. Lorke, and H. Wiggers, J. Appl. Phys. 101, 103–112 (2007).CrossRefGoogle Scholar
  14. 14.
    J. Martin, F. Cichos, F. Huisken, and C. von Borczyskowski, Nano Lett. 8, 656–660 (2008).CrossRefGoogle Scholar
  15. 15.
    V. Kuntermann, C. Cimpean, G. Brehm, G. Sauer, C. Kryschi, and H. Wiggers, Phys. Rev. B 77, 115343 (2008).CrossRefGoogle Scholar
  16. 16.
    Optics of Nanostructures, Ed. by A. V. Fedorov (Nedra, St.-Petersburg, 2005) [in Russian].Google Scholar
  17. 17.
    G. Allan, C. Delerue, and M. Lannoo, Phys. Rev. Lett. 76, 2961–2964 (1996).CrossRefGoogle Scholar
  18. 18.
    K. Kimura, J. Clust. Sci. 10, 359–380 (1999).CrossRefGoogle Scholar
  19. 19.
    J. P. L. A. M. Finster, Surf. Interface Anal. 1, 179–184 (1979).CrossRefGoogle Scholar
  20. 20.
    S. Srivastava, Appl. Spectrosc. Rev. 24, 81–97 (1988).CrossRefGoogle Scholar
  21. 21.
    A. M. Venezia, Catal. Today 77, 359–370 (2003).CrossRefGoogle Scholar
  22. 22.
    D. Q. Yang and E. Sacher, X-ray photoelectron spectroscopy characterization of nanoparticles (NPs). http://wwwscribdcom/doc/2194883/Nano-XPSnanost-1.Google Scholar
  23. 23.
    K. Dohnalova, A. N. Poddubny, A. A. Prokofiev, W. D. A. M. de Boer, C. P. Umesh, J. M. J. Paulusse, H. Zuilhof, and T. Gregorkiewicz, Light: Sci. Appl. 2, e47 (2013). doi: 10.1038/lsa.2013.3CrossRefGoogle Scholar
  24. 24.
    S. G. Dorofeev, A. A. Ischenko, N. N. Kononov, and G. V. Fetisov, Curr. Appl. Phys. 12, 718–725 (2012).CrossRefGoogle Scholar
  25. 25.
    S. G. Dorofeev, N. N. Kononov, G. V. Fetisov, A. A. Ishchenko, D.-J. Liaw, Nanotekhnika, No. 4, 35–44 (2010).Google Scholar
  26. 26.
    S. G. Dorofeev, N. N. Kononov, and A. A. Ishchenko, Nanotekhnika, No. 1, 62–64 (2012).Google Scholar
  27. 27.
    A. O. Rybaltovskiy, A. A. Ischenko, Y. S. Zavorotny, A.V. Garshev, S. G. Dorofeev, N. N. Kononov, N. V. Minaev, S. A. Minaeva, A. P. Sviridov, P. S. Timashev, I. I. Khodos, V. I. Yusupov, M. A. Lazov, V. Ya. Panchenko, and V. N. Bagratashvili, J. Mater. Sci. 50, 2247–2256 (2015). doi: 10.1007/s10853-014-8787-xCrossRefGoogle Scholar
  28. 28.
    V. S. Letokhov, Laser Picosecond Spectroscopy and Photochemistry of Biomolecules, Series on Optics and Optoelectronics (Nauka, Moscow, 1987; CRC, Boca Raton, 1987).Google Scholar
  29. 29.
    M. P. Seah and S. J. Spencer, Surf. Interface Anal. 35, 515–524 (2003).CrossRefGoogle Scholar
  30. 30.
    Y. C. Fang, Z. J. Zhang, and M. Lu, J. Luminesc. 126, 145–148 (2007).CrossRefGoogle Scholar
  31. 31.
    J. H. Thomas and A. M. Goodman, J. Electrochem. Soc. 126, 1766–1770 (1979).CrossRefGoogle Scholar
  32. 32.
    Y. B. Kim, M. Tuominen, I. Raaijmakers, R. Blank, R. Wilhelm, and S. Haukka, Electrochem. Solid State 3, 346–349 (2000).CrossRefGoogle Scholar
  33. 33.
    W. K. Choi, F. W. Poon, F. C. Loh, and K. L. Tan, J. Appl. Phys. 81, 7386–7391 (1997).CrossRefGoogle Scholar
  34. 34.
    A. Hohl, T. Wieder, P. A. van Aken, T. E. Weirich, G. Denninger, M. Vidal, S. Oswald, C. Deneke, J. Mayer, and H. Fuess, J. Non-Cryst. Solids 320, 255–280 (2003).CrossRefGoogle Scholar
  35. 35.
    C. D. Wagner, A. V. Naumkin, A. Kraut-Vass, J.W. Allison, C. J. Powell, J. R. Rumble, NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 3.5 (NIST, Gaithersburg, MD, 2003). http://srdatanistgov/xps/Google Scholar
  36. 36.
    K. Chiba and Y. Takenaka, Appl. Surf. Sci. 254, 2534–2539 (2008).CrossRefGoogle Scholar
  37. 37.
    J. Vegh, J. Electron. Spectrosc. 151, 159–164 (2006).CrossRefGoogle Scholar
  38. 38.
    A. Bahari, J. Nanostruct. 1, 54–61 (2012).Google Scholar
  39. 39.
    J. Vegh, Surf. Sci. 563, 183–190 (2004).CrossRefGoogle Scholar
  40. 40.
    B. V. Crist, Handbook of Monochromatic XPS Spectra: The Elements and Their Native Oxides (Wiley-Blackwell, 2000).Google Scholar
  41. 41.
    A. A. Ishchenko, M. A. Lazov, A. P. Popov, V. N. Bagratashvili, A. O. Rybaltovskii, N. V. Alov, and A. M. Ionov, “Methods of experimental X-ray photoelectron determination of nanosilicon composition and composite structures on its base,” No. ME 233-2015 (Standartinform, 2015).Google Scholar
  42. 42.
    S. V. Chekalin, Phys. Usp. 49, 634 (2006).CrossRefGoogle Scholar
  43. 43.
    V. O. Kompanets, S. V. Chekalin, S. G. Dorofeev, N. N. Kononov, P. Yu. Barzilovich, and A. A. Ischenko, Quantum Electron. 44, 552–555 (2014).CrossRefGoogle Scholar
  44. 44.
    I. Jimenez and J. L. Sacedon, Surf. Sci. 482–485, 272–278 (2001).CrossRefGoogle Scholar
  45. 45.
    W. D. A. M. de Boer, M. L. D. de Jong, D. Timmerman, T. Gregorkiewicz, H. Zhang, W. J. Buma, A. N. Poddubny, A. A. Prokofiev, and I. N. Yassievich, Phys. Rev. B 88, 155304 (2013).CrossRefGoogle Scholar
  46. 46.
    R. A. Smith, Semiconductors, 1st ed. (Cambridge Univ. Press, New York, 1959).Google Scholar
  47. 47.
    W. D. A. M. de Boer, D. Timmerman, T. Gregorkiewicz, H. Zhang, W. J. Buma, A. N. Poddubny, A. A. Prokofiev, and I. N. Yassievich, Phys. Rev. B 85, 161409 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. O. Kompanets
    • 1
  • S. V. Chekalin
    • 1
  • M. A. Lazov
    • 2
  • N. V. Alov
    • 3
  • A. M. Ionov
    • 4
  • S. G. Dorofeev
    • 3
  • P. Yu. Barzilovich
    • 5
  • E. A. Ryabov
    • 1
  • V. N. Bagratashvili
    • 6
  • S. S. Babkina
    • 2
  • A. A. Ischenko
    • 2
  1. 1.Institute of SpectroscopyRussian Academy of SciencesMoscowRussia
  2. 2.Lomonosov State University of Fine Chemical TechnologyMoscowRussia
  3. 3.Faculty of ChemistryMoscow State UniversityMoscowRussia
  4. 4.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  5. 5.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  6. 6.Institute of Problems of Laser and Information TechnologiesRussian Academy of SciencesMoscowRussia

Personalised recommendations