Skip to main content
Log in

Iron-based polymetallic catalysts with a nanostructured surface for deep oxidation processes

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

A new class of highly active polymetallic catalysts for deep oxidation based on iron with admixtures of other d-metals and rare earths has been developed. The precursors of the catalysts are multicomponent intermetallides obtained by selfpropagating high-temperature synthesis (SHS). The XPA spectra, specific surface, and the morphology of the surface according to the SEM results are studied. The catalytic properties are studied using the example of deep oxidation processes of carbon monoxide and propane. It has been shown that two-level metal–oxide nanostructures are common features of the surface for the catalysts studied. The lowest level represents granules 10–30 nm in diameter, of which flat hexahedrons are built with a diameter of about 1 μm and a thickness of ≤100 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Yamasaki, M. Matsuoka, and M. Anpo, “Characterization of the active sites on Pt-loaded ZSM-5 (Pt/ZSM-5) prepared by an ion-exchange method for the oxidation of CO at low temperatures,” Catal. Lett. 91, 111 (2003).

    Article  Google Scholar 

  2. T. V. Turkova, V. F. Dovganyuk, and A. I. Aleshin, “Low percent palladium alumina catalysts ALVIGO-M for the protection of the air environment from nitrogen oxides and organic compounds” in Proceedings of the KATEK-2007, St.-Petersburg, December 11–14, 2007 (Inst. Katal. Boreskova, Novosibirsk, 2007), p. 42.

    Google Scholar 

  3. S. P. Denisov, “Behavior of nanosized particles Pt, Rh and Pd on γ-Al2O3 and Ce1–x ZrxO2 ± δ carriers in conditions of high temperature three-functional catalytic (TWC) process,” Extended Abstract of Cand. Sci. (Chem.) Dissertation (Inst. Gen. Inorg. Chem., Moscow, 2008).

    Google Scholar 

  4. F. Ying, H.-K. So, Ch.-T. Au, and S.-Y. Lai, “Catalytic oxidation of carbon monoxide over Au and Pt-Au catalysts supported on hierarchically structured nanocrystalline CeO2,” in Proceedings of the 14th International Congress on Catalysis, July 13–18, 2008 (Korean Inst. Chem. Eng., 2008), p. 437.

    Google Scholar 

  5. S. Jafari, H. Mahabady Asilian, and H. Kazemian, “Gold nano-particles supported on Na–Y and H–Y types zeolites: activity and thermal stability for CO oxidation reaction,” Catal. Lett. 128, 57 (2009).

    Article  Google Scholar 

  6. D. Horvath, L. Toth, and L. Guczi, “Gold nanoparticles: effect of treatment on structure and catalytic activity of Au/Fe2O3 catalyst prepared by co-precippitation,” Catal. Lett. 67, 117 (2000).

    Article  Google Scholar 

  7. C. L. Peza-Ledesma, L. Escamilla-Perea, R. Nava, B. Pawelec, and J. L. G. Fierro, “Supported gold catalysts in SBA-15 modified with TiO2 for oxidation of carbon monoxide,” Appl. Catal. A: Gen. 375, 37 (2010).

    Article  Google Scholar 

  8. J. C. Bauer, T. J. Toops, Y. Oyola, J. E. Parks II, S. Dai, and S. H. Overbury, “Catalytic activity and thermal stability of Au-CuO/SiO2 catalysts for the low temperature oxidation of CO in the presence of propylene and NO,” Catal. Today 231, 15 (2014).

    Article  Google Scholar 

  9. D. Widmann and R. J. Behm, “Activation of molecular oxygen and the nature of active oxygen species for CO oxidation in oxide supported Au catalysts,” Acc. Chem. Res. 47, 740 (2014).

    Article  Google Scholar 

  10. X. Xie, Y. Li, and W. Shen, “Co3O4 nanorods for low temperature oxidation of carbon monoxide,” in Proceedings of the 14th International Congress on Catalysis, July 13–18, 2008 (Korean Inst. Chem. Eng., 2008), p. 318.

    Google Scholar 

  11. K.-H. Kim, J. Yu, M. H. Kim, and S. -W. Ham, “Lowtemperature oxidation of CO over TiO2-supported CoOx nanoparticles,” in Proceedings of the 14th International Congress on Catalysis, July 13–18, 2008 (Korean Inst. Chem. Eng., 2008), p. 478.

    Google Scholar 

  12. U. Zavyalova, P. Scholz, and B. Ondruschka, “Influence of cobalt precursor and fuels on the performance of combustion synthesized Co3O4/γ-Al2O3 catalysts for total oxidation of methane,” Appl. Catal. A: Gen. 323, 226 (2007).

    Article  Google Scholar 

  13. X. Wei, P. Hug, R. Figi, M. Trottmann, A. Weidenkaff, and D. Ferri, “Catalytic combustion of methane on nano-structured perovskite-type oxides fabricated by ultrasonic spray combustion,” Appl. Catal. B: Environ. 94, 27 (2010).

    Article  Google Scholar 

  14. O. Buchneva, I. Rossetti, C. Biffi, M. Allieta, A. Kryukov, and N. Lebedeva, “La–Ag–Co perovskites for the catalytic flameless combustion of methane,” Appl. Catal. A: Gen. 370, 24 (2009).

    Article  Google Scholar 

  15. M. Machida, K. Ochiai, K. Ito, and K. Ikeue, “Synthesis, crystal structure and catalytic activity for C3H8 combustion of La–Sr–Cu–O–S with K2NiF4-type perovskite structure,” J. Catal. 238, 28 (2006).

    Article  Google Scholar 

  16. V. N. Borshch, S. Ya. Zhuk, N. A. Vakin, K. L. Smirnov, I. P. Borovinskaya, and A. G. Merzhanov, “Sialons as a new class of supports for oxidation catalysts,” Dokl. Phys. Chem. 420, 121 (2008).

    Article  Google Scholar 

  17. V. N. Borshch, S. Ya. Zhuk, N. A. Vakin, K. L. Smirnov, I. P. Borovinskaya, and A. G. Merzhanov, “Catalysts of deep oxidation of CO and hydrocarbons on sialon carriers,” Katal. Promyshl., No. 2, 7 (2009).

    Google Scholar 

  18. V. N. Borshch, S. Ya. Zhuk, N. A. Vakin, K. L. Smirnov, I. P. Borovinskaya, and A. G. Merzhanov, “SHS-produced β-sialons as supports for oxidation catalysts,” Int. J. SHS 18, 38 (2009).

    Google Scholar 

  19. A. Urda, A. Herraiz, A. Redey, and I.-C. Marcu, “Co and Ni ferrospinels as catalysts for propane total oxidation,” Catal. Commun. 10, 1651 (2009).

    Article  Google Scholar 

  20. J. Zhen, X. Wang, D. Liu, S. Song, Z. Wang, Y. Wang, J. Li, F. Wang, and H. Zhang, “Co3O4&CeO2 core&shell cubes: designed synthesis and optimization of catalytic properties,” Chem. Eur. J. 20, 4469 (2014).

    Article  Google Scholar 

  21. A. Yu. Gladky, V. K. Ermolaev, and V. N. Parmon, “Oscillations during catalytic oxidation of propane over a nickel wire,” Catal. Lett. 77, 103 (2001).

    Article  Google Scholar 

  22. T. N. Bairachnaya, M. V. Ved’, and N. D. Sakhnenko, “Catalytic activity of electrochemical alloy Co–W in heterogeneous redox-reactions,” in Proceedings of the Conference on Scientific Principles of Catalyst Preparation 2008, Tuapse, September 4–9, 2008 (Inst. Katal. Boreskova, Novosibirsk, 2008), Vol. 2, p. 13.

    Google Scholar 

  23. M. S. Yakimova, A. S. Lermontov, O. S. Polezhaeva, V. K. Ivanov, and V. F. Tret’yakov, “Deep oxidation of carbon monooxide on catalysts based on nanocrystalline cerium,” in Proceedings of the Conference on Scientific Principles of Catalyst Preparation 2008, Tuapse, September 4–9, 2008 (Inst. Katal. Boreskova, Novosibirsk, 2008), Vol. 2, p. 127.

    Google Scholar 

  24. V. N. Borshch, E. V. Pugacheva, S. Ya. Zhuk, D. E. Andreev, V. N. Sanin, and V. I. Yukhvid, “Multicomponent metal catalysts for deep oxidation of carbon monoxide and hydrocarbons,” Dokl. Phys. Chem. 419, 77 (2008).

    Article  Google Scholar 

  25. V. N. Sanin, D. E. Andreev, E. V. Pugacheva, S. Ya. Zhuk, V. N. Borshch, and V. I. Yukhvid, “Production of intermetallic catalysts of deep CO and hydrocarbon oxidation,” Inorg. Mater. 45, 777 (2009).

    Article  Google Scholar 

  26. E. V. Pugacheva, V. N. Borshch, S. Ya. Zhuk, D. E. Andreev, V. N. Sanin, and B. I. Yukhvid, “SHS-produced intermetallides as catalysts for deep oxidation of carbon monoxide and hydrocarbons,” Int. J. SHS 19, 38 (2010).

    Google Scholar 

  27. O. V. Krylov, Heterogeneous Catalysis (Akademkniga, Moscow, 2004), pp. 375, 376, 487 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Borshch.

Additional information

Original Russian Text © E.V. Pugacheva, V.N. Borshch, S.Ya. Zhuk, V.N. Sanin, D.E. Andreev, V.I. Yukhvid, 2015, published in Rossiiskie Nanotekhnologii, 2015, Vol. 10, Nos. 11–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pugacheva, E.V., Borshch, V.N., Zhuk, S.Y. et al. Iron-based polymetallic catalysts with a nanostructured surface for deep oxidation processes. Nanotechnol Russia 10, 841–849 (2015). https://doi.org/10.1134/S1995078015060099

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078015060099

Keywords

Navigation