Advertisement

Nanotechnologies in Russia

, Volume 10, Issue 11–12, pp 841–849 | Cite as

Iron-based polymetallic catalysts with a nanostructured surface for deep oxidation processes

  • E. V. Pugacheva
  • V. N. Borshch
  • S. Ya. Zhuk
  • V. N. Sanin
  • D. E. Andreev
  • V. I. Yukhvid
Article

Abstract

A new class of highly active polymetallic catalysts for deep oxidation based on iron with admixtures of other d-metals and rare earths has been developed. The precursors of the catalysts are multicomponent intermetallides obtained by selfpropagating high-temperature synthesis (SHS). The XPA spectra, specific surface, and the morphology of the surface according to the SEM results are studied. The catalytic properties are studied using the example of deep oxidation processes of carbon monoxide and propane. It has been shown that two-level metal–oxide nanostructures are common features of the surface for the catalysts studied. The lowest level represents granules 10–30 nm in diameter, of which flat hexahedrons are built with a diameter of about 1 μm and a thickness of ≤100 nm.

Keywords

Sialon Deep Oxidation Flameless Combustion Korean Inst Carbon Monooxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Yamasaki, M. Matsuoka, and M. Anpo, “Characterization of the active sites on Pt-loaded ZSM-5 (Pt/ZSM-5) prepared by an ion-exchange method for the oxidation of CO at low temperatures,” Catal. Lett. 91, 111 (2003).CrossRefGoogle Scholar
  2. 2.
    T. V. Turkova, V. F. Dovganyuk, and A. I. Aleshin, “Low percent palladium alumina catalysts ALVIGO-M for the protection of the air environment from nitrogen oxides and organic compounds” in Proceedings of the KATEK-2007, St.-Petersburg, December 11–14, 2007 (Inst. Katal. Boreskova, Novosibirsk, 2007), p. 42.Google Scholar
  3. 3.
    S. P. Denisov, “Behavior of nanosized particles Pt, Rh and Pd on γ-Al2O3 and Ce1–xZrxO2 ± δ carriers in conditions of high temperature three-functional catalytic (TWC) process,” Extended Abstract of Cand. Sci. (Chem.) Dissertation (Inst. Gen. Inorg. Chem., Moscow, 2008).Google Scholar
  4. 4.
    F. Ying, H.-K. So, Ch.-T. Au, and S.-Y. Lai, “Catalytic oxidation of carbon monoxide over Au and Pt-Au catalysts supported on hierarchically structured nanocrystalline CeO2,” in Proceedings of the 14th International Congress on Catalysis, July 13–18, 2008 (Korean Inst. Chem. Eng., 2008), p. 437.Google Scholar
  5. 5.
    S. Jafari, H. Mahabady Asilian, and H. Kazemian, “Gold nano-particles supported on Na–Y and H–Y types zeolites: activity and thermal stability for CO oxidation reaction,” Catal. Lett. 128, 57 (2009).CrossRefGoogle Scholar
  6. 6.
    D. Horvath, L. Toth, and L. Guczi, “Gold nanoparticles: effect of treatment on structure and catalytic activity of Au/Fe2O3 catalyst prepared by co-precippitation,” Catal. Lett. 67, 117 (2000).CrossRefGoogle Scholar
  7. 7.
    C. L. Peza-Ledesma, L. Escamilla-Perea, R. Nava, B. Pawelec, and J. L. G. Fierro, “Supported gold catalysts in SBA-15 modified with TiO2 for oxidation of carbon monoxide,” Appl. Catal. A: Gen. 375, 37 (2010).CrossRefGoogle Scholar
  8. 8.
    J. C. Bauer, T. J. Toops, Y. Oyola, J. E. Parks II, S. Dai, and S. H. Overbury, “Catalytic activity and thermal stability of Au-CuO/SiO2 catalysts for the low temperature oxidation of CO in the presence of propylene and NO,” Catal. Today 231, 15 (2014).CrossRefGoogle Scholar
  9. 9.
    D. Widmann and R. J. Behm, “Activation of molecular oxygen and the nature of active oxygen species for CO oxidation in oxide supported Au catalysts,” Acc. Chem. Res. 47, 740 (2014).CrossRefGoogle Scholar
  10. 10.
    X. Xie, Y. Li, and W. Shen, “Co3O4 nanorods for low temperature oxidation of carbon monoxide,” in Proceedings of the 14th International Congress on Catalysis, July 13–18, 2008 (Korean Inst. Chem. Eng., 2008), p. 318.Google Scholar
  11. 11.
    K.-H. Kim, J. Yu, M. H. Kim, and S. -W. Ham, “Lowtemperature oxidation of CO over TiO2-supported CoOx nanoparticles,” in Proceedings of the 14th International Congress on Catalysis, July 13–18, 2008 (Korean Inst. Chem. Eng., 2008), p. 478.Google Scholar
  12. 12.
    U. Zavyalova, P. Scholz, and B. Ondruschka, “Influence of cobalt precursor and fuels on the performance of combustion synthesized Co3O4/γ-Al2O3 catalysts for total oxidation of methane,” Appl. Catal. A: Gen. 323, 226 (2007).CrossRefGoogle Scholar
  13. 13.
    X. Wei, P. Hug, R. Figi, M. Trottmann, A. Weidenkaff, and D. Ferri, “Catalytic combustion of methane on nano-structured perovskite-type oxides fabricated by ultrasonic spray combustion,” Appl. Catal. B: Environ. 94, 27 (2010).CrossRefGoogle Scholar
  14. 14.
    O. Buchneva, I. Rossetti, C. Biffi, M. Allieta, A. Kryukov, and N. Lebedeva, “La–Ag–Co perovskites for the catalytic flameless combustion of methane,” Appl. Catal. A: Gen. 370, 24 (2009).CrossRefGoogle Scholar
  15. 15.
    M. Machida, K. Ochiai, K. Ito, and K. Ikeue, “Synthesis, crystal structure and catalytic activity for C3H8 combustion of La–Sr–Cu–O–S with K2NiF4-type perovskite structure,” J. Catal. 238, 28 (2006).CrossRefGoogle Scholar
  16. 16.
    V. N. Borshch, S. Ya. Zhuk, N. A. Vakin, K. L. Smirnov, I. P. Borovinskaya, and A. G. Merzhanov, “Sialons as a new class of supports for oxidation catalysts,” Dokl. Phys. Chem. 420, 121 (2008).CrossRefGoogle Scholar
  17. 17.
    V. N. Borshch, S. Ya. Zhuk, N. A. Vakin, K. L. Smirnov, I. P. Borovinskaya, and A. G. Merzhanov, “Catalysts of deep oxidation of CO and hydrocarbons on sialon carriers,” Katal. Promyshl., No. 2, 7 (2009).Google Scholar
  18. 18.
    V. N. Borshch, S. Ya. Zhuk, N. A. Vakin, K. L. Smirnov, I. P. Borovinskaya, and A. G. Merzhanov, “SHS-produced β-sialons as supports for oxidation catalysts,” Int. J. SHS 18, 38 (2009).Google Scholar
  19. 19.
    A. Urda, A. Herraiz, A. Redey, and I.-C. Marcu, “Co and Ni ferrospinels as catalysts for propane total oxidation,” Catal. Commun. 10, 1651 (2009).CrossRefGoogle Scholar
  20. 20.
    J. Zhen, X. Wang, D. Liu, S. Song, Z. Wang, Y. Wang, J. Li, F. Wang, and H. Zhang, “Co3O4&CeO2 core&shell cubes: designed synthesis and optimization of catalytic properties,” Chem. Eur. J. 20, 4469 (2014).CrossRefGoogle Scholar
  21. 21.
    A. Yu. Gladky, V. K. Ermolaev, and V. N. Parmon, “Oscillations during catalytic oxidation of propane over a nickel wire,” Catal. Lett. 77, 103 (2001).CrossRefGoogle Scholar
  22. 22.
    T. N. Bairachnaya, M. V. Ved’, and N. D. Sakhnenko, “Catalytic activity of electrochemical alloy Co–W in heterogeneous redox-reactions,” in Proceedings of the Conference on Scientific Principles of Catalyst Preparation 2008, Tuapse, September 4–9, 2008 (Inst. Katal. Boreskova, Novosibirsk, 2008), Vol. 2, p. 13.Google Scholar
  23. 23.
    M. S. Yakimova, A. S. Lermontov, O. S. Polezhaeva, V. K. Ivanov, and V. F. Tret’yakov, “Deep oxidation of carbon monooxide on catalysts based on nanocrystalline cerium,” in Proceedings of the Conference on Scientific Principles of Catalyst Preparation 2008, Tuapse, September 4–9, 2008 (Inst. Katal. Boreskova, Novosibirsk, 2008), Vol. 2, p. 127.Google Scholar
  24. 24.
    V. N. Borshch, E. V. Pugacheva, S. Ya. Zhuk, D. E. Andreev, V. N. Sanin, and V. I. Yukhvid, “Multicomponent metal catalysts for deep oxidation of carbon monoxide and hydrocarbons,” Dokl. Phys. Chem. 419, 77 (2008).CrossRefGoogle Scholar
  25. 25.
    V. N. Sanin, D. E. Andreev, E. V. Pugacheva, S. Ya. Zhuk, V. N. Borshch, and V. I. Yukhvid, “Production of intermetallic catalysts of deep CO and hydrocarbon oxidation,” Inorg. Mater. 45, 777 (2009).CrossRefGoogle Scholar
  26. 26.
    E. V. Pugacheva, V. N. Borshch, S. Ya. Zhuk, D. E. Andreev, V. N. Sanin, and B. I. Yukhvid, “SHS-produced intermetallides as catalysts for deep oxidation of carbon monoxide and hydrocarbons,” Int. J. SHS 19, 38 (2010).Google Scholar
  27. 27.
    O. V. Krylov, Heterogeneous Catalysis (Akademkniga, Moscow, 2004), pp. 375, 376, 487 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • E. V. Pugacheva
    • 1
  • V. N. Borshch
    • 1
  • S. Ya. Zhuk
    • 1
  • V. N. Sanin
    • 1
  • D. E. Andreev
    • 1
  • V. I. Yukhvid
    • 1
  1. 1.Institute of Structural Macrokinetics and Materials ScienceRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations