Skip to main content
Log in

Influence of carbon-nanotube concentration in chloroform on the kinetics of agglomeration and sedimentation

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

A uniform distribution of carbone nanotubes in a polymer matrix is required for the fabrication of composite materials. Since carbon nanotubes for introduction into polymers are preliminarily dissolved in water or organic solvents, it is necessary to create a uniform stable dispersion of carbon nanotubes in solvents. It is shown in this work that the concentration of nanotubes is a critical parameter determining the stability and composition of a solution. The kinetics of agglomeration of multiwalled carbon nanotubes dispersed in chloroform by sonication has been studied using optical spectroscopy and dynamic light scattering. It has been shown that such solutions can be stable for a long time at nanotube concentrations below 0.01 wt %. The intense agglomeration and sedimentation of nanotubes have been observed in a solution with a higher concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Pike and C. Seager, Phys. Rev. B 10 (4), 1421–1434 (1974).

    Article  Google Scholar 

  2. Du. Fangming, J. Fischer, and K. Winey, Phys. Rev. B 72, 121404–121408 (2005).

    Article  Google Scholar 

  3. Z. Spitalskya, D. Tasis, K. Papagelis, and C. Galiotisa, J. Prog. Polym. Sci. 35, 357–401 (2010).

    Article  Google Scholar 

  4. R. D. Noble, J. Membr. Sci. 378 (1, 2), 393–397 (2011).

    Article  Google Scholar 

  5. K. Hsiao, J. Alms, and S. Advani, Nanotecnology 14, 791–793 (2003).

    Article  Google Scholar 

  6. B. Fiedler, F. Gojny, M. Wichmann, M. Nolte, and K. Schulte, Compos. Sci. Technol. 66, 3115–3125 (2006).

    Article  Google Scholar 

  7. P. Kodgire, A. Bhattacharyya, S. Bose, N. Gupta, A. Kulkarni, and A. Misra, Chem. Phys. Lett. 432, 480–485 (2006).

    Article  Google Scholar 

  8. A. Grekhov, Yu. Eremin, G. Dibrov, and V. Volkov, Petrol. Chem. 53 (8), 549–553 (2013).

    Article  Google Scholar 

  9. J. Yu, N. Grossiord, C. E. Koning, and J. Loos, Carbon 45, 618–623 (2007).

    Article  Google Scholar 

  10. A. Osorio, I. Silveira, V. Bueno, and C. Bergmann, Appl. Surf. Sci. 255, 2485–2489 (2008).

    Article  Google Scholar 

  11. S. Ntim, O. Sae-Khow, F. Witzmann, and S. Mitra, J. Colloid. Interface Sci. 355, 383–388 (2011).

    Article  Google Scholar 

  12. M. Li and C. P. Huang, Carbon 48, 4527–4534 (2010).

    Article  Google Scholar 

  13. L. Ju, W. Zhang, X. Wang, J. Hu, and Y. Zhang, Coll. Surf. A 409, 159–166 (2012).

    Article  Google Scholar 

  14. G. Kasaliwal, P. Pöschke, A. Göldel, and G. Heinrich, Polymer 52, 1027–1036 (2011).

    Article  Google Scholar 

  15. O. Maslova, A. Mikheikin, I. Leontiev, Y. Yuzyuk, and A. Tkachev, Nanotechnol. Russia 5 (9, 10), 641–646 (2010).

    Article  Google Scholar 

  16. N. Hung, I. Anoshkin, A. Dementjev, D. Katorov, and E. Rakov, Inorg. Mater. 44 (3), 219–223 (2008).

    Article  Google Scholar 

  17. S. Brunauer, P. Emmett, and E. Teller, J. Am. Chem. Soc. 60, 309–319 (1938).

    Article  Google Scholar 

  18. E. Barrett, L. Joyner, and P. Halenda, J. Am. Chem. Soc. 73, 373–380 (1951).

    Article  Google Scholar 

  19. J. Workman, Statistics in Spectroscopy (Academic Press, Elsevier, 2001), pp. 3–20.

    Google Scholar 

  20. International Standard ISO13321.

  21. D. Chowdhury and Z. Cui, Carbon 49, 862–868 (2011).

    Article  Google Scholar 

  22. A. Ortega and J. Garcia de la Torre, “Hydrodynamic properties of rodlike and disklike particles in dilute solution,” J. Chem. Phys. 119, 9914–9915 (2003).

    Article  Google Scholar 

  23. S. J. Broersma, Chem. Phys. 74 (12), 6989–6990 (1981).

    Google Scholar 

  24. J. Lee, C. Park, and G. Whitesides, Anal. Chem. 75, 6544–6554 (2003).

    Article  Google Scholar 

  25. Y. Ivanov, V. Cheshkov, and M. Natova, Polymer Composite Materials: Interface Phenomena and Processes (Kluwer Academic Publ., 2001).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Eremin.

Additional information

Original Russian Text © A.M. Grekhov, Yu.S. Eremin, 2015, published in Rossiiskie Nanotekhnologii, 2015, Vol. 10, Nos. 7–8.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grekhov, A.M., Eremin, Y.S. Influence of carbon-nanotube concentration in chloroform on the kinetics of agglomeration and sedimentation. Nanotechnol Russia 10, 523–529 (2015). https://doi.org/10.1134/S1995078015040060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078015040060

Keywords

Navigation