Nanotechnologies in Russia

, Volume 10, Issue 7–8, pp 523–529 | Cite as

Influence of carbon-nanotube concentration in chloroform on the kinetics of agglomeration and sedimentation

Article
  • 56 Downloads

Abstract

A uniform distribution of carbone nanotubes in a polymer matrix is required for the fabrication of composite materials. Since carbon nanotubes for introduction into polymers are preliminarily dissolved in water or organic solvents, it is necessary to create a uniform stable dispersion of carbon nanotubes in solvents. It is shown in this work that the concentration of nanotubes is a critical parameter determining the stability and composition of a solution. The kinetics of agglomeration of multiwalled carbon nanotubes dispersed in chloroform by sonication has been studied using optical spectroscopy and dynamic light scattering. It has been shown that such solutions can be stable for a long time at nanotube concentrations below 0.01 wt %. The intense agglomeration and sedimentation of nanotubes have been observed in a solution with a higher concentration.

Keywords

MWCNT carbon nanotubes dispersion sedimentation agglomeration organic solvents 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Pike and C. Seager, Phys. Rev. B 10 (4), 1421–1434 (1974).CrossRefGoogle Scholar
  2. 2.
    Du. Fangming, J. Fischer, and K. Winey, Phys. Rev. B 72, 121404–121408 (2005).CrossRefGoogle Scholar
  3. 3.
    Z. Spitalskya, D. Tasis, K. Papagelis, and C. Galiotisa, J. Prog. Polym. Sci. 35, 357–401 (2010).CrossRefGoogle Scholar
  4. 4.
    R. D. Noble, J. Membr. Sci. 378 (1, 2), 393–397 (2011).CrossRefGoogle Scholar
  5. 5.
    K. Hsiao, J. Alms, and S. Advani, Nanotecnology 14, 791–793 (2003).CrossRefGoogle Scholar
  6. 6.
    B. Fiedler, F. Gojny, M. Wichmann, M. Nolte, and K. Schulte, Compos. Sci. Technol. 66, 3115–3125 (2006).CrossRefGoogle Scholar
  7. 7.
    P. Kodgire, A. Bhattacharyya, S. Bose, N. Gupta, A. Kulkarni, and A. Misra, Chem. Phys. Lett. 432, 480–485 (2006).CrossRefGoogle Scholar
  8. 8.
    A. Grekhov, Yu. Eremin, G. Dibrov, and V. Volkov, Petrol. Chem. 53 (8), 549–553 (2013).CrossRefGoogle Scholar
  9. 9.
    J. Yu, N. Grossiord, C. E. Koning, and J. Loos, Carbon 45, 618–623 (2007).CrossRefGoogle Scholar
  10. 10.
    A. Osorio, I. Silveira, V. Bueno, and C. Bergmann, Appl. Surf. Sci. 255, 2485–2489 (2008).CrossRefGoogle Scholar
  11. 11.
    S. Ntim, O. Sae-Khow, F. Witzmann, and S. Mitra, J. Colloid. Interface Sci. 355, 383–388 (2011).CrossRefGoogle Scholar
  12. 12.
    M. Li and C. P. Huang, Carbon 48, 4527–4534 (2010).CrossRefGoogle Scholar
  13. 13.
    L. Ju, W. Zhang, X. Wang, J. Hu, and Y. Zhang, Coll. Surf. A 409, 159–166 (2012).CrossRefGoogle Scholar
  14. 14.
    G. Kasaliwal, P. Pöschke, A. Göldel, and G. Heinrich, Polymer 52, 1027–1036 (2011).CrossRefGoogle Scholar
  15. 15.
    O. Maslova, A. Mikheikin, I. Leontiev, Y. Yuzyuk, and A. Tkachev, Nanotechnol. Russia 5 (9, 10), 641–646 (2010).CrossRefGoogle Scholar
  16. 16.
    N. Hung, I. Anoshkin, A. Dementjev, D. Katorov, and E. Rakov, Inorg. Mater. 44 (3), 219–223 (2008).CrossRefGoogle Scholar
  17. 17.
    S. Brunauer, P. Emmett, and E. Teller, J. Am. Chem. Soc. 60, 309–319 (1938).CrossRefGoogle Scholar
  18. 18.
    E. Barrett, L. Joyner, and P. Halenda, J. Am. Chem. Soc. 73, 373–380 (1951).CrossRefGoogle Scholar
  19. 19.
    J. Workman, Statistics in Spectroscopy (Academic Press, Elsevier, 2001), pp. 3–20.Google Scholar
  20. 20.
    International Standard ISO13321.Google Scholar
  21. 21.
    D. Chowdhury and Z. Cui, Carbon 49, 862–868 (2011).CrossRefGoogle Scholar
  22. 22.
    A. Ortega and J. Garcia de la Torre, “Hydrodynamic properties of rodlike and disklike particles in dilute solution,” J. Chem. Phys. 119, 9914–9915 (2003).CrossRefGoogle Scholar
  23. 23.
    S. J. Broersma, Chem. Phys. 74 (12), 6989–6990 (1981).Google Scholar
  24. 24.
    J. Lee, C. Park, and G. Whitesides, Anal. Chem. 75, 6544–6554 (2003).CrossRefGoogle Scholar
  25. 25.
    Y. Ivanov, V. Cheshkov, and M. Natova, Polymer Composite Materials: Interface Phenomena and Processes (Kluwer Academic Publ., 2001).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.National Research Nuclear University “MEPhI”MoscowRussia
  2. 2.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations