Advertisement

Nanotechnologies in Russia

, Volume 10, Issue 5–6, pp 458–467 | Cite as

Assessment of reproductive toxicity of multiwalled carbon nanotubes and their putative effects on population ecology of mouselike rodents

  • I. A. Vasyukova
  • S. L. Gribanovskii
  • A. A. Gusev
  • A. Yu. Ubogov
  • T. O. Khaliullin
  • L. M. Fatkhutdinova
  • A. G. Tkachev
Article

Abstract

An assessment of the reproductive toxicity of multiwalled carbon nanotubes (MWCNTs) for male laboratory mice according to a set of morphophysiological, biochemical, and histological criteria is reported. Oral administration of MWCNTs at doses of 0.3, 3, and 30 mg/kg evoked a dose-dependent decrease in the level of free testosterone in blood plasma, as well as a 15–40% decrease in male fertilization capacity. Mathematical modeling allowed for the assumption that a decrease in the parameter named above can induce changes in the population dynamics of mouselike rodents, namely, a reduction in the peak numbers of animals and an increase of the oscillation period by ∼30%. The results can be used for developing environmental standards of MWCNT intake by mammals, as well for the development of new products for controlling rodent populations.

Keywords

Carbon Nanotubes Luteinizing Hormone Carbon Black Follicle Stimulate Hormone Free Testosterone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Foster, Nanotechnology: Science, Innovation and Opportunity (Upper Saddle River, NJ, Prentice Hall, 2005).Google Scholar
  2. 2.
    A. A. Shvedova, A. Pietroiusti, B. Fadeel, and V. E. Kagan, “Mechanisms of carbon nanotubeinduced toxicity: focus on oxidative stress,” Toxicol. Appl. Pharmacol. 261, 121–133 (2012).CrossRefGoogle Scholar
  3. 3.
    P. M. Hoet, I. Bruske-Hohlfeld, and O. V. Salata, “Nanoparticles—known and unknown health risks,” J. Nanobiotechnol. 2, 12–18 (2004).CrossRefGoogle Scholar
  4. 4.
    A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nature Nanotechnol. 3, 557–562 (2008).CrossRefGoogle Scholar
  5. 5.
    P. N. D’yachkov, Carbon Nanotubes: Structure, Properties, Application (BINOM. Laboratoriya znanii, Moscow, 2006) [in Russian].Google Scholar
  6. 6.
    Z. Liu, S. Tabakman, K. Welsher, and H. Dai, “Carbon nanotubes in biology and medicine: in vitro and in vivo. Detection, imaging and drug delivery,” Nano Res. 2(2), 85–120 (2009).CrossRefGoogle Scholar
  7. 7.
    S. Y. Madani, N. Naderi, O. Dissanayake, A. Tan, and A. M. Seifalian, “A new era of cancer treatment: carbon nanotubes as drug delivery tools,” Int. J. Nanomed. 6, 2963–2979 (2011).Google Scholar
  8. 8.
    B. S. Wong, S. L. Yoong, A. Jagusiak, T. Panczyk, H. K. Ho, W. H. Ang, and G. Pastorin, “Carbon nanotubes for delivery of small molecule drugs,” Adv. Drug. Deliv. Rev. 65(15), 1964–2015 (2013).CrossRefGoogle Scholar
  9. 9.
    D. Y. Pui, C. Qi, N. Stanley, G. Oberdörster, and A. Maynard, “Recirculating air filtration significantly reduces exposure to airborne nanoparticles,” Environ. Health. Perspect. 116(7), 863–866 (2008).CrossRefGoogle Scholar
  10. 10.
    A. C. Elder, R. Gelein, J. N. Finkelstein, C. Cox, and G. Oberdörster, “Pulmonary inflammatory response to inhaled ultrafine particles is modified by age, ozone exposure, and bacterial toxin,” Inhal. Toxicol. 12(4), 227–246 (2000).Google Scholar
  11. 11.
    C. P. Firme and P. R. Bandaru, “Toxicity issues in the application of carbon nanotubes to biological systems,” Nanomed.: Nanotechnol., Biol., Med. 6, 245–256 (2010).CrossRefGoogle Scholar
  12. 12.
    S. Koyama, M. Endo, Y. A. Kim, T. Hayashi, T. Yanagisawa, K. Osaka, H. Koyama, H. Haniu, and N. Kuroiwa, Role of systemic T-cells and histopathological aspects after subcutaneous implantation of various carbon nanotubes in mice,” Carbon 44(6), 1079–1092 (2006).CrossRefGoogle Scholar
  13. 13.
    J. K. Lee, B. C. Sayers, K.-S. Chun, H.-C. Lao, J. K. Shipley-Phillips, J. C. Bonner, and R. Langenbach, “Multi-walled carbon nanotubes induce COX-2 and iNOS expression via MAP kinase-dependent and - independent mechanisms in mouse RAW264.7 macrophages,” Part. Fibre Toxicol. 9, 14 (2012).CrossRefGoogle Scholar
  14. 14.
    N. G. Prodanchuk and G. M. Balan, “Nanotoxicology: state of the art and research trends,” Sovr. Probl. Toksikol. 3–4, 4–20 (2009).Google Scholar
  15. 15.
    Z. Lan and W.-X. Yang, “Nanoparticles and spermatogenesis: how do nanoparticles affect spermatogenesis and penetrate the blood-testis barrier,” Nanomedicine 7(4), 579–596 (2012).CrossRefGoogle Scholar
  16. 16.
    K. S. Hougaard and L. Campagnolo, “Reproductive toxicity,” in Adverse Effects of Engineered Nanomaterials: Exposure, Toxicology, and Impact on Human Health (Acad. Press, 2012), pp. 225–242.CrossRefGoogle Scholar
  17. 17.
    J. Cheng, E. Flahaut, and S. H. Cheng, “Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos,” Environ. Toxicol. Chem. 26, 708–716 (2007).CrossRefGoogle Scholar
  18. 18.
    J. Cheng, C. M. Chan, L. M. Veca, W. L. Poon, P. K. Chan, L. Qu, Y.-P. Sun, and S. H. Cheng, “Acute and long-term effects after single loading of functionalized multi-walled carbon nanotubes into zebrafish (Danio rerio),” Toxicol. Appl. Pharmacol. 235, 216–225 (2009).CrossRefGoogle Scholar
  19. 19.
    J. H. Lim, S. H. Kim, I. S. Shin, N. H. Park, C. Moon, S. S. Kang, S. H. Kim, S. C. Park, and J. C. Kim, “Maternal exposure to multi-wall carbon nanotubes does not induce embryo-fetal developmental toxicity in rats,” Birth Defects Res. B. Dev. Reprod. Toxicol. 92(1), 69–76 (2011).CrossRefGoogle Scholar
  20. 20.
    S. Ivani, I. Karimi, S. R. Tabatabaei, and S. Reza, “Biosafety of multiwalled carbon nanotube in mice: a behavioral toxicological approach,” J. Toxicol. Sci. 37(6), 1191–1205 (2012).CrossRefGoogle Scholar
  21. 21.
    K. S. Hougaard, P. Jackson, Z. O. Kyjovska, R. K. Birkedal, P.-J. De Temmerman, A. Brunelli, E. Verleysen, A. M. Madsen, A. T. Saber, G. Pojana, J. Mast, A. Marcomini, K. A. Jensen, H. Wallin, J. Szarek, A. Mortensen, and U. Vogel, “Effects of lung exposure to carbon nanotubes on female fertility and pregnancy. A study in mice,” Reproduct. Toxicol. 41, 86–97 (2013).CrossRefGoogle Scholar
  22. 22.
    K. S. Hougaard, P. Jackson, K. A. Jensen, A. T. Saber, U. Vogel, and H. Wallin, “Carbon nanotubes: effects on gestation and reproduction,” Reproduct. Toxicol. 30, 239 (2010).CrossRefGoogle Scholar
  23. 23.
    T. Fujitani, K. Ohyama, A. Hirose, T. Nishimura, D. Nakae, and A. Ogata, “Teratogenicity of multi-wall carbon nanotube (MWCNT) in ICR mice,” J. Toxicol. Sci. 37(1), 81–89 (2012).CrossRefGoogle Scholar
  24. 24.
    A. Pietroiusti, M. Massimiani, I. Fenoglio, M. Colonna, F. Valentini, G. Palleschi, A. Camaioni, A. Magrini, G. Siracusa, A. Bergamaschi, A. Sgambato, and L. Campagnolo, “Low doses of pristine and oxidized single-wall carbon nanotubes affect mammalian embryonic development,” ACS Nano 5(6), 4624–4633 (2011).CrossRefGoogle Scholar
  25. 25.
    A. Pietroiusti, L. Campagnolo, and B. Fadeel, “Interactions of engineered nanoparticles with organs protected by internal biological barriers,” Small 9(9–10), 1557–1572 (2013).CrossRefGoogle Scholar
  26. 26.
    V. N. Aldobaev, L. A. Eremenko, A. A. Mazanova, D. Kh. Biketova, E. V. Kovaleva, L. D. Kvacheva, G. A. Badun, V. E. Muradyan, and A. A. Maslikov, “Distribution and the way to estimate pharmacokinetic parameters of oxygenized shortened single wall nanotubes in Sprague Dawley rats babies entered during breast feeding,” Toksikol. Vestn., No. 2(119), 26–30 (2013).Google Scholar
  27. 27.
    W. Qi, J. Bi, X. Zhang, J. Wang, J. Wang, P. Liu, Z. Li, and W. Wu, “Damaging effects of multi-walled carbon nanotubes on pregnant mice with different pregnancy times,” Sci. Rep. 4, 4352–4365 (2014).Google Scholar
  28. 28.
    J. Bonde, “Male reproductive organs are at risk from environmental hazards,” Asian J. Androl. 12, 152–156 (2010).CrossRefGoogle Scholar
  29. 29.
    MR (Methodological Recommendations), no. 1.2.2522-09: The Way to Detect Nanomaterials Which Are Potentially Dangerous for Human Health (Moscow, 2009).Google Scholar
  30. 30.
    A. A. Gusev, N. E. Kopytova, A. S. Dudov, O. V. Zakharova, I. A. Polyakova, O. N. Zaitseva, and A. V. Emel’yanov, “The way to apply mathematical simulation and electronic database for estimating ecological-toxicological potentially dangerous of carbon nanostructured material,” Nauch. Vedomosti Belgorodsk. Gos. Univ. Ser.: Estestv. Nauki 19(9), 140–146 (2012).Google Scholar
  31. 31.
    A. G. Tkachev, “Carbon nanomaterials “Taunit”: research, manufacturing, application,” Nanotekhnika, No. 2, 17–21 (2006).Google Scholar
  32. 32.
    Guide for the Care and Use of Laboratory Animals, 8th Ed. (Nat. Acad. Press, Washington, 2011).Google Scholar
  33. 33.
    Guide for the Care and Use of Laboratory Animals (Nat. Acad. Press, Washington, 2001).Google Scholar
  34. 34.
    M. Monk, Mammalian Development: a Practical Approach (IRL Press, 1987).Google Scholar
  35. 35.
    Handbook on Experimental (Preclinical) Study of New Pharmacological Means, Ed. by R. U. Khabriev (Meditsina, Moscow, 2005) [in Russian].Google Scholar
  36. 36.
    Toxicological-Hygienic Estimation of Nanomaterials Safety. Methodological Recommendations (Federal Hygiene and Epidemiology Centre, Moscow, 2009) [in Russian].Google Scholar
  37. 37.
    S. S. Kramarenko, The Way to Analyze the Population Age Structure. Practical Works on Mathematical Methods in Ecology. http://www.ievbras.ru/ecostat/Kiril/Article/A18/Vol3/Kramar3.html#r2
  38. 38.
    A. A. Dinerman, Environmental Pollutants Effect to Embryonic Development Disorder (Meditsina, Moscow, 1980), pp. 36–57 [in Russian].Google Scholar
  39. 39.
    N. S. Moskvitina, V. N. Kuranova, and S. V. Savel’ev, “Violation of embryonic development for vertebrata under anthropogenic environmental pollution,” Sibirsk. Ekolog. Zh., No. 4, 487–495 (2011).Google Scholar
  40. 40.
    Handbook on Experimental (Preclinical) Study of New Pharmacological Means, Ed. by V. P. Fisenko (ZAO “IIA “Remedium”, Moscow, 2000) [in Russian].Google Scholar
  41. 41.
    The Laboratory Mouse (Handbook of Experimental Animals), Ed. by H. Hedrich (Acad. Press, 2012).Google Scholar
  42. 42.
    The Way to Determine Toxicity and Dangerous of Chemical Matters (Toxicometry), Ed. by I. V. Sanotskii (Meditsina, Moscow, 1970) [in Russian].Google Scholar
  43. 43.
    Infertility in Matrimony, Ed. by I. F. Yund (Zdorov’e, Kiev, 1990) [in Russian].Google Scholar
  44. 44.
    L. A. Vasil’eva, Statistical Methods in Biology, Medicine, and Agriculture (Novosibirsk State Univ., Novosibirsk, 2007) [in Russian].Google Scholar
  45. 45.
    K. J. Siegrist, S. H. Reynolds, M. L. Kashon, D. T. Lowry, C. Dong, A. F. Hubbs, S.-H. Young, J. L. Salisbury, D. W. Porter, S. A. Benkovic, M. McCawley, M. J. Keane, J. T. Mastovich, K. L. Bunker, L. G. Cena, M. C. Sparrow, J. L. Sturgeon, C. Z. Dinu, and L. M. Sargent, “Genotoxicity of multi-walled carbon nanotubes at occupationally relevant doses,” Part. Fibre Toxicol. 11, 6 (2014).CrossRefGoogle Scholar
  46. 46.
    Y. Bai, Y. Zhang, J. Zhang, Q. Mu, W. Zhang, E. R. Butch, S. E. Snyder, and B. Yan, “Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility,” Nature Nanotechnol. 5, 683–689 (2010).CrossRefGoogle Scholar
  47. 47.
    L. Tabet, C. Bussy, N. Amara, A. Setyan, A. Grodet, M. J. Rossi, J. C. Pairon, J. Boczkowski, and S. Lanone, “Adverse effects of industrial multiwalled carbon nanotubes on human pulmonary cells,” J. Toxicol. Environ. Health A 72, 60–73 (2009).CrossRefGoogle Scholar
  48. 48.
    L. V. Ivanov, M. I. Kramar, V. P. Chernykh, S. P. Kovalenko, N. T. Kartel’, and Yu. I. Gubin, “Carbon nanotubes activating action onto sperm cell,” Poverkhnost’ 1(16), 314–321 (2009).Google Scholar
  49. 49.
    V. D. Troshin, Stress and Stressogenic Diseases (Meditsinskoe informatsionnoe agentstvo, Moscow, 2007) [in Russian].Google Scholar
  50. 50.
    A. A. Shvedova, E. R. Kisin, D. Porter, P. Schulte, V. E. Kagan, B. Fadeel, and V. Castranova, “Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: Two faces of Janus?,” Pharmacol. Ther. 121(2), 192–204 (2009).CrossRefGoogle Scholar
  51. 51.
    G. Yu. Riznichenko, Mathematical Model in Biophysics and Ecology (Computer Res. Inst., Izhevsk-Moscow, 2003) [in Russian].Google Scholar
  52. 52.
    I. E. Benenson, Density-Dependent Regulation and Population Fluctuation for Small Mammals. Simulation Results of Population Ecological Processes (Vladivostok, 1987), pp. 6–31 [in Russian].Google Scholar
  53. 53.
    O. F. Sadykov and I. E. Benenson, Population Fluctuation for Small Mammals: Conceptions, Hypotheses, Models (Nauka, Moscow, 1992) [in Russian].Google Scholar
  54. 54.
    O. P. Lyulyakin, D. A. Sarancha, R. V. Trashcheev, and Yu. S. Yurezanskaya, Mathematical Simulation for Ecological Communities. Reports on Applied Mathematics (Dorodnicyn Computing Centre RAS, Moscow, 2013) [in Russian].Google Scholar
  55. 55.
    D. A. Sarancha and R. V. Trashcheev, “Some approaches to ecological-biological objects simulation,” in Proc. 12th All-Russian Meeting on Control Problems VSPU-2014 (V. A. Trapeznikov Institute of Control Sciences RAS, Moscow, 2014), pp. 6615–6628 [in Russian].Google Scholar
  56. 56.
    B. Grzimek, Enzyklopädie des Tierreiches (Zürich, 1973).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • I. A. Vasyukova
    • 1
  • S. L. Gribanovskii
    • 1
  • A. A. Gusev
    • 1
    • 2
  • A. Yu. Ubogov
    • 3
  • T. O. Khaliullin
    • 4
  • L. M. Fatkhutdinova
    • 4
  • A. G. Tkachev
    • 5
  1. 1.NOTs Nanotekhnologii i NanomaterialyDerzhavin State University, TambovTambovRussia
  2. 2.MISiS National Research and Technological UniversityMoscowRussia
  3. 3.Pathoanatomical Bureau of Tambov OblastTambovRussia
  4. 4.Kazan State Medical University of the Russian Ministry of HealthcareKazanRussia
  5. 5.Tambov State Technical UniversityTambovRussia

Personalised recommendations